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FOREWORD

Measure concentration ideas developed during the last century in various parts of
mathematics including functional analysis, probability theory, and statistical mechanics,
areas typically dealing with models involving an infinite number of variables. After early
observations, and in particular a geometric interpretation of the law of large numbers by
E. Borel, the real birth of measure concentration took place in the early 1970s with the new
proof by V. Milman, relying on Lévy’s inequality (of isoperimetric nature), of Dvoretzky’s
theorem on spherical sections of convex bodies in high dimension. The inherent concept of
measure concentration emphasized by V. Milman through this proof turned out to be one
of the main achievements of analysis of the second part of the last century. It opened a pos-
teriori completely new perspectives and developments with applications to various fields of
mathematics. In particular, prompted by the concept and results, in the 1980s and 1990s
M. Talagrand undertook a deep investigation of concentration inequalities for product
measures, emphasizing a revolutionary new look at independence. Viewing namely ran-
dom variables depending (in a smooth way) on the influence of many independent random
variables (but not toomuch on any of them) as essentially constant led him to groundbreak-
ing achievements and striking applications. Particularly with the tool of celebrated convex
distance inequality,M. Talagrand developed applications to combinatorial probability, stat-
istical mechanics, and empirical processes. Simultaneously, the entropic method, relying
on an early observation by I. Herbst in the context of logarithmic Sobolev inequalities and
developing information theoretic ideas, became a powerful additional and flexible method
in the investigation of new concentration properties.

Since then, the concentration-of-measure phenomenonhas spread out to an impressively
wide range of illustrations and applications, and became a central tool and viewpoint in the
quantitative analysis of a number of asymptotic properties in numerous topics of interest
including geometric analysis, probability theory, statistical mechanics, mathematical stat-
istics and learning theory, randommatrix theory or quantum information theory, stochastic
dynamics, randomized algorithms, complexity, and so on.

This book by S. Boucheron, G. Lugosi, and P. Massart is a most welcome and complete
account of the modern developments of concentration inequalities in the context of the
probabilistic method. The monograph covers most of the important and recent develop-
ments, with constant attention to illustrations and applications which make the theory so
fruitful and attractive. The emphasis put on information theoretic methods is one main fea-
ture of the exposition and there is considerable benefit in this approach for a number of
fundamental results and tools, for example the convex distance inequality or sharp bounds
on empirical processes of fundamental importance in statistical applications. The mono-
graph covers further basic and most illustrative examples of the current research, including
dimension reduction, random matrices, Boolean analysis, transportation inequalities, and



vi | FOR EWORD

isoperimetric-type bounds. The style adopted by the authors is a perfect balance from
the basic and classical material up to the most sophisticated and powerful results, always
accessible and clearly reachable. Young and confirmed scientists, independently of their
background, will find with this book the ideal path toward the powerful ideas and tools
of concentration inequalities, suggested and illustrated with the most relevant applications
and developments.

It is an honour and a pleasure to write this preface to this wonderful book, which is sure
to be a huge success.

Michel Ledoux
Université de Toulouse
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1

Introduction

The topic of this book is the study of random fluctuations of functions of independent ran-
dom variables. Concentration inequalities quantify such statements, typically by bounding
the probability that such a function differs from its expected value (or from its median) by
more than a certain amount.

The search for concentration inequalities has been a topic of intensive research in the last
decades in a variety of areas because of their importance in numerous applications. Among
the areas of applications, without trying to be exhaustive, wemention statistics, learning the-
ory, discretemathematics, statistical mechanics, randommatrix theory, information theory,
and high-dimensional geometry.

While concentration properties for sums of independent random variables were thor-
oughly studied and fairly well understood in classical probability theory, powerful tools to
handle more general functions of independent random variables were not introduced until
the appearance of martingale methods in the 1970s; see Yurinskii (1976), Maurey (1979),
Milman and Schechtman (1986), Shamir and Spencer (1987), andMcDiarmid (1989).

A remarkable series of papers in the mid-1990s by Michel Talagrand provided major
new insight into the problem and opened many exciting new research directions. The main
principle, as summarized by Talagrand (1995), is that “a random variable that smoothly
depends on the influence of many independent random variables satisfies Chernoff type
bounds.” This book provides answers to the natural question hidden behind this citation:
What kind of smoothness conditions should we put on a function f of independent random
variables X1, . . . ,Xn in order to get concentration bounds for Z = f (X1, . . . ,Xn) around its
mean or its median?

In this introductory chapter we briefly review the history of the subject and outline the
contents, as an appetizer for the rest of the book.

Before getting started, we emphasize that one of the main driving forces behind the
development of the theory was the need to understand random fluctuations of suprema
of empirical processes defined as follows. Let T be a set that for now we assume to be finite
and letX1, . . . ,Xn be independent randomvectors taking values inRT .We are interested in
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concentration properties of sups∈T
∑n

i=1 Xi,s (whereXi = (Xi,s)s∈T ). Throughout the book
we will regularly return to this example and discuss implications of the general theory.

1.1 Sums of Independent RandomVariables
and theMartingaleMethod

The simplest and most thoroughly studied example is the sum of independent real-valued
random variables. The key to the study of this case is summarized by the trivial but
fundamental additive formulas

Var

(
n∑
i=1

Xi

)
=

n∑
i=1

Var (Xi)

and

ψ∑n
i=1 Xi(λ) =

n∑
i=1

ψXi(λ) (1.1)

where ψY(λ) = logEeλY denotes the logarithm of the moment generating function of
the random variable Y . These formulae allow one to derive concentration inequalities for
Z = X1 + · · · + Xn around its expectation via Markov’s inequality, as shown in Chapter 2.

Hoeffding’s inequality

One of the basic benchmark inequalities for sums of independent bounded random vari-
ables isHoeffding’s inequality (Theorem2.8). Itmay be proved by noting that for a random
variable Y taking values in an interval [a, b],

Var (Y) ≤ (b – a)2

4

which, through an exponential change of the underlying probability measure detailed in
Lemma 2.2, leads to the following bound for the log-moment generating function of
Y – EY :

ψY –EY(λ) ≤ λ2(b – a)2

8
.

If X1, . . . ,Xn are independent random variables taking values in [a1, b1], . . . , [an, bn] the
additivity formula (1.1) implies that

ψZ –EZ(λ) ≤ λ2v
2

for every λ ∈ R

where v =
∑

i(bi – ai)
2/4. Since the right-hand side corresponds to the log-moment gen-

erating function of a centered normal random variable with variance v, Z – EZ is said to be
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sub-Gaussian with variance factor v. The sub-Gaussian property implies that Z – EZ has a
sub-Gaussian-like tail. More precisely, as it is proved in Section 2.6, for all t > 0,

P
{
|Z – EZ| ≥ t

} ≤ 2e–t
2/(2v).

In his influential paper Hoeffding (1963) points out that the same result holds true under
the weaker assumption that Z is a martingale with bounded increments. This simple
observation is the basis of the martingale method for proving concentration inequalities, a
powerful methodology that is still actively investigated. Hoeffding’s inequality for martin-
gales was more explicitly stated in the subsequent work of Azuma (1967) and Hoeffding’s
inequality for martingales with bounded increments is often referred to as Azuma’s inequal-
ity or the Azuma–Hoeffding inequality. However, it took some time before the power of the
martingale approach for the study of functions of independent variables was realized, see
McDiarmid (1989, 1998), Chung and Lu (2006a, 2006b), and Dubhashi and Panconesi
(2009) for surveys.

The bounded differences condition

One of the simplest and more natural smoothness assumptions that one may consider is
the so-called bounded differences condition. A function f : X n → R of n variables (all taking
values in some measurable set X ) is said to satisfy the bounded differences condition if
there exists constants c1, . . . , cn > 0 such that for every x1, . . . , xn, y1, . . . , yn ∈ X n and
for all i = 1, . . . , n,

| f (x1, . . . , xi, . . . , xn) – f (x1, . . . , xi–1, yi, xi+1 . . . , xn)| ≤ ci.

In other words, changing any of the n variables, while keeping the rest fixed, cannot cause a
big change in the value of the function. Equivalently, one may interpret this as a Lipschitz
condition. Indeed, defining the weighted Hamming distance dc on the product spaceX n as

dc(x, y) =
n∑
i=1

ci1{xi �=yi},

the bounded differences condition means that f is 1-Lipschitz with respect to the metric dc.
The sum of bounded variables is the simplest example of a function of bounded

differences. Indeed, if X1, . . . ,Xn are real-valued independent random variables such
that Xi takes its values in the interval [ai, bi], then f (X1, . . . ,Xn) =

∑n
i=1 Xi satisfies the

bounded differences condition with ci = bi – ai. The basic argument behind themartingale-
based approach is that once the function f satisfies the bounded differences condition,
Z = f (X1, . . . ,Xn) may be interpreted as a martingale with bounded increments with
respect to Doob’s filtration. In other words, one may write

Z – EZ =
n∑
i=1

�i (1.2)
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where �i = E[Z|X1, . . . ,Xi] – E[Z|X1, . . . ,Xi–1] for i = 2, . . . , n and �1 =
E[Z|X1] – EZ, and notice that the bounded differences condition implies that, con-
ditionally on X1, . . . ,Xi–1, the martingale increment �i takes its values in an interval of
length at most ci. Hence Hoeffding’s inequality remains valid for Z with v = (1/4)

∑n
i=1 c

2
i .

This result is known as the bounded differences inequality, also often referred to as
McDiarmid’s inequality. In this book we offer various alternative proofs and variants of this
fundamental inequality (see Sections 6.1 and 8.1).

Another approach to understanding the concentration properties of Lipschitz functions
of independent variables is based on investigating how product measures concentrate in
high-dimensional spaces. The main ideas behind this approach, dominant in Talagrand’s
work, are briefly explained next.

1.2 The Concentration-of-Measure Phenomenon

Isoperimetric inequalities and concentration

The classical isoperimetric theorem (see Section 7.2) states that among all compact
sets A ⊂ Rn with smooth boundary and a fixed volume, Euclidean balls are the ones
with smallest surface area. This result has the following equivalent formulation that
allows one to ask and investigate the same question in general metric spaces. Writing
d(x,A) = infy∈A d(x, y) and

At =
{
x ∈ Rn : d(x,A) < t

}
for the t-blowup of A (with respect to the Euclidean distance d), the isoperimetric the-
orem states that for any compact set A and a Euclidean ball B with the same volume,
λ(At) ≥ λ(Bt) for all t > 0. Here the Lebesgue measure λ and the Euclidean distance d
play a fundamental role but the same question may be asked for more general measures
and distance functions. For our purposes, probability measures are closer to the heart of the
matter. An equally interesting, though somewhat less known, case is the isoperimetric prob-
lem on the sphere. The corresponding isoperimetric theorem is usually referred to as Lévy’s
isoperimetric theorem – proved independently by Lévy (1951) and Schmidt (1948). Again
this theorem can be stated in two equivalent ways but the one that is more important for
our goals is as follows: Let Sn–1 = {x ∈ Rn : ‖x‖ = 1} denote the unit sphere in Rn and let
μ denote the uniform (i.e. rotation invariant) probability measure on Sn–1. For any meas-
urable set A ⊂ Sn–1, if B is a geodesic ball (i.e. a spherical cap) withμ(B) = μ(A), then, for
all t > 0,

μ(At) ≥ μ(Bt),

where the t-blowups At and Bt are understood with respect to the geodesic distance on
the sphere. The first appearance of the concentration-of-measure principlemay be deduced
from this statement. Indeed, by considering a half-sphereB, onemay explicitly compute the
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measure of the spherical cap Bc
t and Lévy’s isoperimetric theorem implies that for any set

A ⊂ Sn–1 withμ(A) ≥ 1/2, the complement Ac
t of the t-blowup of A satisfies

μ (Ac
t) ≤ e–(n–1)t

2/2.

In other words, as soon as μ(A) ≥ 1/2, the measure of Ac
t decreases very fast as a func-

tion of t. This is the essence of the concentration-of-measure phenomenon whose importance
was perhaps first fully recognized by Vitali Milman in his proof of Dvoretzky’s theorem.
Unlike the original formulation of the isoperimetric theorem, the inequality above may be
generalized to measures on abstract metric spaces without any reference to geometry.

Lipschitz functions

Consider a metric space (X , d) and a continuous functional f : X → R. Given a probab-
ility measure P onX , one is interested in bounding the deviation probabilities

P
{
f (X) ≥ M f (X) + t

}
and P

{
| f (X) –M f (X)| ≥ t

}
whereX is a random variable taking values inX with distribution P andM f (X) is a median
of f (X). Given a Borel set A ⊂ X , let

At =
{
x ∈ X : d(x,A) < t

}
denote the t-blowup of A where t > 0. Now observe that if f is 1-Lipschitz (i.e.
f (x) – f (y) ≤ d(x, y) for all x, y ∈ X ), then taking A =

{
x ∈ X : f (x) ≤ M f (X)

}
, for all

x ∈ At ,

f (x) < M f (X) + t,

and therefore

P
{
f (X) ≥ M f (X) + t

} ≤ P
{
Ac
t
}
= P {d (X,A) ≥ t}.

We can now forget what exactly the set A is and just use the fact that P{A ≥ 1/2}. Indeed,
defining the concentration function

α(t) = sup
A⊂X :P{A}≥ 1

2

P {d (X,A) ≥ t},

we obtain

P
{
f (X) ≥ M f (X) + t

} ≤ α(t).

Changing f into –f , one also gets

P
{
f (X) ≤ M f (X) – t

} ≤ α(t).
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Combining these inequalities of course implies the concentration inequality

P
{
| f (X) –M f (X)| ≥ t

} ≤ 2α(t).

The conclusion is that if one can control the concentration function α, as in the case of
the uniform probability measure on the sphere, then one immediately gets a concentration
inequality for any Lipschitz function.

What makes this general principle attractive is that the concentration function α may
be controlled without determining the extremal sets of the isoperimetric problem and any
upper bound for the function α yields concentration inequalities for all Lipschitz functions.

The Gaussian case

The principle described above is nicely illustrated in the case when (X , d) is the
n-dimensional Euclidean space Rn and P is the standard Gaussian probability measure in
Rn. Indeed, in this case the isoperimetric problem is connected to that of the sphere via
Poincaré’s limit procedure. The Gaussian isoperimetric problem was completely solved
independently by Borell (1975) and Tsirelson, Ibragimov, and Sudakov (1976). The
Gaussian isoperimetric theorem, stated and proved in Section 10.4, states that for any Borel
setA ⊂ Rn, ifH ⊂ Rn is a half-space with P(H) = P(A), then P(Ac

t) ≤ P(Hc
t) for all t > 0.

The Gaussian isoperimetric theorem reveals the exact form of the concentration func-
tion. Indeed, define the standard normal tail function by

�(t) =
1√
2π

∫ ∞

t
e–u

2/2du,

and for any Borel set A ⊂ Rn, let tA ∈ R be such that 1 – �(tA) = P(A). Then, takingH to
be the half-space (–∞, tA)× Rn–1, we see that

P(A) = P(H) and P(Hc
t) = �(tA + t).

Now, if P(A) ≥ 1/2, then tA ≥ 0, and therefore P(Hc
t) ≤ �(t). Hence, the Gaussian iso-

perimetric theorem implies that the concentration function α of the standard Gaussian
measure P is exactly equal to the standard Gaussian tail function�.

Putting things together, we see that if X is a standard Gaussian vector in Rn and
f : Rn → R is a 1-Lipschitz function, then, for all t > 0,

P
{
f (X) –M f (X) ≥ t

} ≤ �(t) ≤ e–t
2/2.

Concentration of product measures

The Gaussian isoperimetric inequality implies sharp concentration inequalities for smooth
functions of independent normal random variables. However, if we wish to understand
random fluctuations of functions of more general independent random variables, then we
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need to study the concentration of general product measures. In order to do this, the
first step is to define an appropriate distance on a product space X n. A natural candidate
is the Hamming distance, or more generally, a weighted Hamming distance which offers
more flexibility. For any vector α = (α1, . . . ,αn) of non-negative real numbers and for any
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X n, define

dα(x, y) =
n∑
i=1

αi1{xi �=yi}.

Let X = (X1, . . . ,Xn) be a vector of independent random variables, each taking values in
X and denote by P the distribution of X. Then by a simple consequence of the bounded
differences inequality, we have the following concentration property of the product prob-
ability measure P with respect to the weighted Hamming distance dα: for every A ⊂ X n

with P{X ∈ A} ≥ 1/2,

P
{
dα(X,A) ≥ t

} ≤ e–t
2/(2‖α‖2) (1.3)

where ‖α‖ denotes the Euclidean norm of the vector α. (See Section 7.4 for the proof.)
This implies that if f : X n → R is 1-Lipschitz with respect to the distance dα , it satisfies

to the sub-Gaussian tail bound

P
{
f (X) ≥ M f (X) + t

} ≤ e–t
2/(2‖α‖2).

We illustrate this inequality by considering the special case of the supremum of a
Rademacher process. LetX n = {–1, 1}n and

f (x) = max
t∈T

n∑
i=1

αi,txi =
n∑
i=1

αi,t∗(x)xi,

where T is a finite set and (αi,t) is a collection of real numbers indexed by i = 1, . . . , n
and t ∈ T , and t∗(x) ∈ T denotes an index for which the maximum is achieved. For all
x, y ∈ {–1, 1}n,

f (x) – f (y) ≤
n∑
i=1

αi,t∗(x)(xi – yi) ≤ 2
n∑
i=1

max
t∈T

∣∣αi,t
∣∣1{xi �=yi}.

Thus, f is 1-Lipschitz with respect to the weighted Hamming distance dα where
αi = 2maxt∈T

∣∣αi,t
∣∣ for all i. As a consequence, if X is uniformly distributed on the hyper-

cube {–1, 1}n, the random variable

f (X) = max
t∈T

n∑
i=1

αi,tXi

satisfies

P
{
f (X) ≥ M f (X) + t

} ≤ e–t
2/(2v)
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where the “variance factor” v is defined by v = 4
∑n

i=1 maxt∈T α2
i,t . This result is not com-

pletely satisfactory as v can bemuch larger than the largest variance of the individual random
variables

∑n
i=1 αi,tXi. One would ideally expect to be able to exchange the order of the sum

and the maximum in the above definition of v.
Indeed, such a result is possible (by paying the modest price of losing some absolute

multiplicative constant in the exponent), thanks to the celebrated convex distance inequality
of Talagrand (proved in Section 7.4) which is one of the major milestones of the theory.

To see how this works, note first that setting αi(x) = 2
∣∣αi,t∗(x)

∣∣, the supremum of the
Rademacher process f defined above satisfies

f (x) – f (y) ≤
n∑
i=1

αi(x)1{xi �=yi}, (1.4)

a relaxed regularity condition as compared to the Lipschitz property with respect to some
given weighted Hamming distance dα . The beauty of Talagrand’s convex distance inequal-
ity is that it guarantees that the following uniform version of (1.3) holds for all v > 0 and
for every set A ⊂ X n with P {X ∈ A} ≥ 1/2:

P

{
sup

α∈[0,∞)n:‖α‖2≤v
dα (X,A) ≥ t

}
≤ 2e–t

2/(4v).

Now one can play a similar game as for the case of Lipschitz functions before. Choosing
A =

{
x ∈ X n : f (x) ≤ M f (X)

}
, for every x ∈ X n such that dα(x)(x,A) < t, the regular-

ity condition (1.4) implies that f (x) < M f (X) + t. Hence, taking v = supx∈X n

∑n
i=1 α2

i (x),
we have {

x ∈ X n : f (x) ≥ M f (X) + t
} ⊂ {

x ∈ X n : dα(x)(x,A) ≥ t
}

⊂
{
x ∈ X n : sup

‖α‖2≤v
dα(x,A) ≥ t

}
,

and therefore,

P
{
f (X) ≥ M f (X) + t

} ≤ 2e–t
2/(4v).

If we consider again the example of the maximum of a Rademacher process, we see that
v ≤ 4 supt∈T

∑n
i=1 α2

i,t and we obtain a concentration inequality of the desired form. This
example highlights the power of Talagrand’s convex distance inequality and the interest in
considering the relaxed regularity condition (1.4) as opposed to Lipschitz regularity with
respect to some given weighted Hamming distance. Indeed, the convex distance inequal-
ity became the key tool for obtaining improved concentration inequalities in countless
applications, some of them shown in detail in this book.

Nevertheless, this regularity condition may be too restrictive in some cases. To under-
stand the shortcomings of this condition, consider the fundamental example of the
supremum of an empirical process defined as follows. Let T be a finite set and for
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i = 1, . . . , n, let xi = (xi,t)t∈T be a vector whose components are indexed by T . Writing
x = (x1, . . . , xn), we may define f (x) = maxt∈T

∑n
i=1 xi,t . Note that the maximum of a

Rademacher process is a special case. However, the study of suprema of general empir-
ical processes is more involved. Indeed, if we try to use the approach that turned out to
be successful for Rademacher processes, the increments of f are controlled by

f (x) – f ( y) ≤
n∑
i=1

xi,t∗(x) – yi,t∗(x)

where t∗(x) ∈ T is a point at which the maximum of
∑n

i=1 xi,t is achieved. At this point we
see how lucky we were in the case of Rademacher processes by simultaneously benefiting
from the special structure of xi,j = αi,jxi and the boundedness of the xi’s to end up satisfying
(1.4). Dealing with general empirical processes is a significantly more intricate issue. By a
substantial deepening of the approach that led to the convex distance inequality, Talagrand
(1996b) was able to derive a Bennett-type concentration inequality for the suprema of
empirical processes (seeTheorem12.5 for a somewhat sharper version). The authors of this
book were awestruck by this achievement of Talagrand but collectively confess that they
were unable to go further than a line-by-line reading of the proof. However, Talagrand’s
work stimulated intensive research partly in the search for more transparent proofs. Today,
following the path opened by Ledoux (1997), a more accessible proof is available by what
we call the entropy method. This method, briefly sketched in the next section, is one of
the central topics of this book. We feel that many of the most important concentration
inequalities can be obtained in a principled and transparent way by the entropy method.
In particular, the reader will find in this book a complete proof of Talagrand’s inequality for
empirical processes.

We would like to emphasize that, apart from an exciting mathematical challenge, the
study of concentration properties of the supremum of an empirical process is strongly
motivated by applications in mathematical statistics, machine learning, and other areas.
This is why we keep this example as one of the recurring themes of this book.

1.3 The EntropyMethod

The entropy method replaces Talagrand’s subtle induction arguments by sub-additive
inequalities (often called “tensorization” inequalities in the literature) that follow naturally
from the convexity of entropy and related quantities like the variance.

The Efron–Stein inequality

Perhaps the simplest inequality of this type is the Efron–Stein inequality that, in spite of its
simplicity, turns out to be a surprisingly powerful tool for bounding the variance of general
functions of independent random variables. This inequality, studied in depth in Chapter 3,
can be stated as follows. Let X = (X1, . . . ,Xn) be a vector of independent random variables
and denote by X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn) the (n – 1)-vector obtained by dropping
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Xi. Let E(i) and Var(i) denote the conditional expectation and variance operators given X(i).
Then Z = f (X1, . . . ,Xn) satisfies

Var (Z) ≤ E
n∑
i=1

Var(i)(Z).

This inequality was proved by Efron and Stein (1981) under the additional assumption
that f is symmetric and by Steele (1986) in the general case. As pointed out by Rhee and
Talagrand (1986), the Efron–Stein inequality may be viewed as a martingale inequality.
The argument, detailed in Section 3.1, may be summarized as follows. Since the martingale
increments are orthogonal inL2, the decomposition (1.2) implies that

Var (Z) =
n∑
i=1

E�2
i .

Now using the independence of the Xi, the martingale increments may be rewritten as
�i = E

[
Z – E(i)Z|X1, . . . ,Xi

]
and the Efron–Stein inequality is obtained by a simple use

of Jensen’s inequality. This proof emphasizes the role of the Efron–Stein inequality as a
substitute for the additivity of the variance for independent random variables.

Sub-additivity of entropy

The Efron–Stein inequality has an interpretation that gives rise to far-reaching generaliza-
tions. In particular, it paves the way to appropriate generalizations of (1.1) which was the
key to exponential inequalities for sums of independent random variables. Indeed the vari-
ancemay be viewed as a special case of a�-entropy defined as follows. If� denotes a convex
function defined on an interval I and Y is an integrable random variable taking its values in
I, then the�-entropy of Y is defined by

H�(Y) = E�(Y) – �(EY).

By Jensen’s inequality, the �-entropy is non-negative and it is finite if and only if �(Y) is
integrable. The variance corresponds to the choice�(x) = x2, while taking�(x) = x log x
leads to the definition of the “usual” notion of entropy Ent(Y) of a nonnegative random
variable Y .

As it turns out, the sub-additive property of the variance expressed by the Efron–Stein
inequality remains true for a large class of �-entropies (characterized in Chapter 14)
that includes the ordinary entropy. More precisely, if Y is a nonnegative function of the
independent random variables X1, . . . ,Xn, then

Ent (Y) ≤ E
n∑
i=1

Ent(i)(Y)

where Ent(i)(Y) = E(i)�(Y) – �
(
E(i)(Y)

)
with�(x) = x log x. Applying this sub-additive

inequality to the random variable Y = eλZ is the basis of the entropy method.
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Herbst’s argument

The sub-additivity property of entropy seems to have appeared first in the proof of
the Gaussian logarithmic Sobolev inequality of Gross (1975). In fact, the Gaussian logar-
ithmic Sobolev inequality, combined with an elegant argument attributed to Herbst, leads
smoothly to the Gaussian concentration inequality. We sketch the argument here and refer
to Chapter 5 for the details. To handle distributions other than Gaussian, one needs to
modify the argument as the logarithmic Sobolev inequality does not hold in general. This is
done in Chapter 6.

TheGaussian logarithmic Sobolev inequality states that ifX is a standardGaussian vector
inRn and g : Rn → R is a continuously differentiable function, then

Ent
(
g2(X)

) ≤ 2E
[∥∥∇g(X)

∥∥2] .
The proof of this inequality relies on the sub-additivity of entropy. The connection between
the Gaussian logarithmic Sobolev inequality and concentration is established by Herbst’s
argument that we will face in various contexts. In the Gaussian framework it is especially
simple to explain.

Indeed, if f : Rn → R is a continuously differentiable 1-Lipschitz function, then for all
x ∈ Rn,

∥∥∇f (x)
∥∥ ≤ 1, and for any λ > 0, we may apply the Gaussian logarithmic Sobolev

inequality to the function g = eλf/2. Since for all x ∈ R,

∥∥∇g(x)
∥∥2 = λ2

4

∥∥∇f (x)
∥∥2 eλf (x) ≤ λ2

4
eλf (x),

we derive from the Gaussian logarithmic Sobolev inequality that

Ent
(
eλf (X)

)
Eeλf (X)

≤ λ2

2
.

Now the next crucial observation is that, defining F(λ) = logEeλ(f (X)–Ef (X)),

Ent
(
eλf (X)

)
Eeλf (X)

= λF′(λ) – F(λ).

This way we obtain the following differential inequality for the logarithm of the moment
generating function

d
dλ

(
F(λ)

λ

)
=
F′(λ)

λ
–
F(λ)
λ2 ≤ 1

2

which one can integrate and obtain that for all λ > 0,

F(λ) ≤ λ2

2
.
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This leads to the Gaussian concentration bound

P
{
f (X) – Ef (X) ≥ t

} ≤ e–t
2/2.

This bound has the same flavor as that which we obtained from the Gaussian isoperimetric
theorem, except that the median is replaced by the mean. This is typically what happens
when one uses the entropy method rather than the isoperimetric method. If one does not
care too much about absolute constants in the exponential bounds, this difference is neg-
ligible since starting from a concentration inequality around the median one can obtain
a concentration inequality around the mean and vice versa, simply because the difference
between the median and the mean is under control.

1.4 The TransportationMethod

We also discuss an alternative way of proving concentration inequalities, the so-called trans-
portation method. The method was initiated by Marton (1986) who built on ideas from
information theory due to Ahlswede, Gács, and Körner (1976) and Csiszár and Körner
(1981). The method is based on a beautiful coupling idea. Given some cost function d,
the transportation cost between two probability measures P andQ is defined by

min
P∈P(P,Q)

EPd(X, Y),

whereP(P,Q) denotes the class of joint distributions of the random variablesX andY such
that the marginal distribution ofX is P and that of Y isQ . The transportation cost measures
the amount of effort required to “transport” a mass distributed according to P into a mass
distributed according toQ , relative to the cost function d. The transportation problem con-
sists of constructing an optimal coupling P ∈ P (P,Q), that is, a minimizer of EPd(X, Y).
In order to explain the link between the transportation cost problem and concentration, we
describe the main ideas within the Gaussian framework.

The core of this connection lies in bounding the transportation cost by some function
of the Kullback–Leibler divergenceD(Q‖P) where we recall that wheneverQ is absolutely
continuous with respect to P, D(Q‖P) = Ent(dQ/dP). In the Gaussian case such a trans-
portation inequality is available for the quadratic cost. In particular, the following inequality,
due to Talagrand (1996d), is proved in Section 8.5: Let P be the standard Gaussian prob-
ability measure onRn and letQ be any probability measure which is absolutely continuous
with respect to P. Then

min
P∈P(P,Q)

n∑
i=1

EP(Xi – Yi)2 ≤ 2D(Q‖P).

The Gaussian concentration inequality may now be derived from this transportation
inequality by an argument due to Bobkov and Götze (1999). The sketch of the argument is
as follows: Assume that f : Rn → R is a 1-Lipschitz function, that is,
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f (y) – f (x) ≤
( n∑

i=1

(xi – yi)2
)1/2

for all x, y ∈ Rn.

Then Jensen’s inequality implies that for any probability distribution P coupling P to
Q � P, one has

EQ f – EPf = EP[f (Y) – f (X)] ≤
(

n∑
i=1

EP (Xi – Yi)2
)1/2

.

Hence, the transportation inequality implies that

EQ f – EPf ≤
√
2D(Q‖P).

Now the concentration of the random variable Z = f (X) (where X is a standard Gaussian
random vector) may be obtained by the following classical duality formula for entropy that
we prove in Section 4.9:

ψZ –EZ(λ) = sup
Q�P

[
λ (EQ f – EPf ) – D(Q‖P)] .

Combining the last two inequalities, we get that for any λ > 0,

ψZ –EZ(λ) ≤ sup
Q�P

[
λ
√
2D(Q‖P) – D(Q‖P)

]
≤ λ2

2
,

simply because 2ab – a2 ≤ b2. This implies the same Gaussian concentration inequality as
that derived from the Gaussian logarithmic Sobolev inequality and Herbst’s argument.

In Chapter 8 we offer a detailed account of the transportation method for proving con-
centration inequalities, pioneered by Marton (1996a, 1996b). In particular, we show how
this method allows one to prove not only the bounded differences inequality but also
Talagrand’s convex distance inequality.

As far as we know, there is no clear hierarchy between the entropymethod and the trans-
portation method. As we will see, there are various results that one can prove by using one
method or the other and there are also results that one can get by one method but not the
other. The entropymethod is quite versatile, easy to use, and performs especially well when
dealing with suprema of empirical processes. However, the entropy method often faces dif-
ficulties when one tries to use it to prove inequalities for the left tail (i.e. upper bounds for
P{Z < EZ – t} for t > 0). On the other hand, the transportationmethod is oftenmore effi-
cient for left tails but turns out to be less flexible than the entropy method, especially when
used for empirical processes.

1.5 Reading Guide

We were guided by two principles while organizing the material of this book (see Fig. 1.1).
First, we tried to keep the exposition as elementary as possible and illustrate the theory
with numerous examples and applications. Our intention was to make most of the material
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accessible to researchers and mathematically mature graduate students and to introduce
the reader to the main ideas of the theory while keeping technicalities at a minimal level,
at least in the first half of the book. This led us to a somewhat nonlinear structure in which
the same topic is revisited several times throughout the book, but with different degrees
of depth. Very roughly, the material may be split into two parts going from Chapter 1
to 9 and from Chapter 10 to 15. The first chapters expose the general tools required to
prove concentration inequalities together with applications of the theory tomany examples.
Chapters 2, 3, and 4 include inequalities for sums of independent random variables (such
as Hoeffding’s inequality that we introduced above), variance bounds for functions of
independent variables related to the Efron–Stein inequality, and the basic information-
theoretic tools needed to develop the entropy method, such as the sub-additive inequality
for entropy. In Chapters 5 and 6 we present the essence of the entropy method building
upon logarithmic Sobolev inequalities (or their modifications) and Herbst’s argument. In
Chapter 7 we investigate the connection between isoperimetry and concentration while
Chapter 8 is devoted to the transportation method. Chapter 9 is entirely dedicated to
the intricate concentration and isoperimetric properties of the simplest product space, the
binary hypercube.We describe some fascinating applications to the study of threshold phe-
nomena. More precisely, we consider general monotone functions f : {–1, 1}n → {0, 1}
of several binary random variables and consider independent binary random variables
X1, . . . ,Xn with distribution P{Xi = 1} = 1 – P{Xi = –1} = p. We are interested in the
behavior ofP{f (X1, . . . ,Xn) = 1} as a function of the parameter p ∈ [0, 1]. If f is increasing
in each variable (and not constant), this probability growsmonotonically from 0 to 1. Using
the technology based on logarithmic Sobolev and isoperimetric inequalities, we establish
surprisingly general sufficient conditions under which P{f (X1, . . . ,Xn) = 1} “jumps” from
near 0 to near 1 in a very short interval of the value of the parameter p.

The second half of the book contains some more advanced material. It includes a deep-
ening of the general tools and their applications. In Chapter 10 we further investigate
isoperimetric problems in the binary hypercube and Gaussian spaces. In particular, we
reproduce Bobkov’s elegant proof of the Gaussian isoperimetric theorem.

Chapters 11–13 are devoted to our canonical example; the supremum of an empirical
process. Chapter 11 covers inequalities for the variance of themaximum,mostly building on
the Efron–Stein inequality, while in Chapter 12 we derive various exponential inequalities.
In Chapter 13 we present some tools to control the expectation of the supremum of an
empirical process and combine them with the concentration inequalities established in the
previous chapters.

Finally, in Chapters 14 and 15 we describe a method for proving moment inequalities
for functions of independent random variables. The method is based on a natural exten-
sion of the entropy method that leads to moment inequalities interpolating between the
Efron–Stein inequality and exponential concentration inequalities.

Each chapter is supplemented by a list of exercises. These exercise sections have several
roles. Some ask the reader to complete arguments that have only been sketched in the text.
Our intention was to make the main text as self-contained as possible but the proof of a few
results that are somewhat technical and not crucial for the main stream of the arguments
are relegated to the exercise sections. Most of these exercises come with detailed hints and
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1. Introduction
2. Basic inequalities
3. Bounding the variance
4. Basic information inequalities
5. Logarithmic Sobolev inequalities
6. The entropy method
7. Concentration and isoperimetry
8. The transportation method
9. Influences and threshold phenomena

10. Isoperimetry on the hypercube and Gaus-
sian spaces

11. The variance of suprema of empirical pro-
cesses

12. Suprema of empirical processes: exponen-
tial inequalities

13. The expected value of suprema of empiri-
cal processes

14. Φ-entropies
15. Moment inequalities

Figure 1.1 Dependence structure of the chapters

the reader should not have major difficulties in filling in the details. Many other exercises
describe related results from the literature whose proof may be more difficult. In all cases,
the exercises provide important supplementary information and we encourage the reader
to look at them.

In order to avoid interrupting the flow of the arguments with references to the literature,
we postpone all bibliographical remarks to the end of each chapter where the reader may
find the source of the material described in the chapter and pointers for further reading and
related material.

We emphasize at this point that the reader looking for a comprehensive account of con-
centration inequalities will be disappointed as there are large chunks of the literature that
we do not cover. For example, we only superficially touch upon the martingale method, the
“classical” approach to concentration inequalities. Martingales are still the most adequate
tool for some problems and the interested reader is referred to the surveys of McDiarmid
(1989, 1998), Schechtman (2003), Chung and Lu (2006a, 2006b), and Dubhashi and
Panconesi (2009).

An important extension that we entirely avoid in this book concerns concentration
inequalities for functions of dependent random variables. For concentration inequalities
for functions of mixing processes, Markov chains, and Markov random fields, we refer the
reader toMarton (1996b, 2003, 2004), Rio (2000), Samson (2000), Catoni (2003), Külske
(2003), Collet (2006), Chazottes et al. (2007), andKontorovich andRamanan (2008), just
to name a few important papers from a continuously growing body of research. The meth-
ods used in the above-mentioned papers range from combinations of martingale methods
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with coupling techniques to refinements of the transportation method. Chatterjee (2007)
developed a general, elegant, and powerful method for proving concentration bounds for
dependent random variables, based on an adaptation of Stein’s method; see also Chatterjee
and Dey (2010).

Mostly motivated by the need to understand the behavior of the number of copies of
small subgraphs (such as triangles) in a random graph, an important body of research
that we do not cover in this book, is devoted to finding sharp concentration inequalit-
ies for low-degree polynomials of independent Bernoulli random variables. The interested
reader may find a long and fascinating story that unfolds in the series of papers of Kim
and Vu (2000, 2004), Vu (2000, 2001), Janson and Ruciński (2004, 2002), Janson,
Oleszkiewicz, and Ruciński (2004), Bolthausen, Comets, and Dembo (2009), Döring and
Eichelsbacher (2009), Chatterjee (2010), DeMarco and Kahn (2010), and Schudy and
Sviridenko (2012).

A related important subject that we only tangentially touch upon is the theory of
U-statistics and U-processes. Introduced by Hoeffding (1948), this special class of func-
tions of independent random variables has attracted considerable attention. We only
discuss briefly some special cases such as aGaussian chaos of order two (see Example 2.12).
For general moment and exponential inequalities for U-statistics, we refer the interested
reader to the book of de la Peña andGiné (1999). For a sample of concentration inequalities
forU-statistics andU-processes, some of which are established with the help of the general
techniques described in this book, see Adamczak (2006), Clémençon, Lugosi, and Vayatis
(2008), Giné, Latała, and Zinn (2000), Houdré andReynaud-Bouret (2003),Major (2005,
2006, 2007), and Verzelen (2010).

Many important geometrical aspects of the concentration-of-measure phenomenon
omitted from this book are treated in Ledoux’s outstanding monograph (2001). Ledoux’s
book describes the concentration-of-measure phenomenon from the perspective of geo-
metry and functional analysis. A decade earlier, the influential book by Ledoux and
Talagrand (1991) emphasized the use of concentration arguments in the analysis of sums of
independent random vectors. During the 1990s, it became clear that functional inequalities
may lead to powerful concentration inequalities and even to sharp isoperimetric estimates
(see, e.g., Chapter 10).
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2

Basic Inequalities

Our main concern in this book is to understand under what conditions random variables
are concentrated around their expected values. The random variables onwhichwe focus are
functions of several independent random variables. In a certain sense, this book is a study of
independence, possibly the most important notion of probability theory.

The most basic concentration results are the laws of large numbers that state that aver-
ages of independent random variables are, undermild integrability conditions, close to their
expectations with high probability. Of course, laws of large numbers have been thoroughly
studied in classical probability theory. More recent results reveal that such concentration
behavior is shared by a large class of general functions of independent variables, and this is
precisely the subject of our book.

While laws of large numbers are asymptotic in nature, we are interested in more quant-
itative results. Throughout the book we focus on concentration inequalities that hold for a
fixed sample size. In this chapter we recall some useful inequalities for sums (or averages) of
independent random variables. This exercise is useful not only because the results will serve
as a reference for comparison with other, more general, concentration inequalities, but also
because some of the basic proof techniques appear in more general contexts.

Concentration properties of sums of independent variables are sensitive to the integ-
rability of the individual terms. In the most favorable situations one can derive exponential
tail bounds. We pay special attention to the cases when the sums exhibit a certain sub-
Gaussian behavior, though often tail probabilities decrease significantly slower than those
of a Gaussian random variable. In such problems inequalities for moments of the random
variable in focus may prove to be useful.

We start this chapter by reviewing some elementary facts about tail probabilities. Then,
in Section 2.2, we describe the so-called Cramér–Chernoff method, the basic technique
for deriving exponential upper bounds for tail probabilities. In Sections 2.3 and 2.4 we
single out two types of tail behaviors that we often face. We call these sub-Gaussian and
sub-gamma random variables and we characterize them in terms of the behavior of their
moments.
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In Section 2.5 a simple useful inequality is presented for bounding the expected
maximum of random variables.

Hoeffding’s inequality, Bennett’s inequality, and Bernstein’s inequality are three clas-
sical benchmark inequalities for sums of independent random variables that are shown and
proved in Sections 2.6, 2.7, and 2.8.

In Section 2.9 we describe the Johnson–Lindenstrauss lemma as an interesting applica-
tion of concentration of sums of independent random variables. Later in the bookwe return
to this example and its modifications to illustrate some of the results.

Finally, some simple association inequalities are presented in Section 2.10, while
Minkowski’s inequality is the subject of Section 2.11.

2.1 FromMoments to Tails

In this book, by a concentration inequality we usually mean an upper bound for the prob-
ability that a real-valued random variable Z differs from its expected value by more than a
certain amount. In other words, we seek upper bounds for tail probabilities of the form

P {Z – EZ ≥ t} and P {Z – EZ ≤ –t}

where t > 0. Of course, here we assume implicitly that the expected value EZ exists.
An elementary, yet powerful device to bound such tail probabilities is based on Markov’s

inequality. To derive Markov’s inequality, simply note that, given a nonnegative random
variable Y , for all t > 0, Y1{Y≥t} ≥ t1{Y≥t}. Taking expectations of both sides of this
inequality, we get Markov’s inequality:

P {Y ≥ t} ≤ E
[
Y1{Y≥t}

]
t

≤ EY
t
.

Of course, this inequality is interesting only if EY < ∞, that is, if Y is integrable. An obvi-
ous way of using Markov’s inequality to obtain concentration inequalities is to apply it to
Y = |Z – EZ|. However, with a simple trick Markov’s inequality can be boosted, leading
to much sharper estimates. Such an improvement is possible whenever Z satisfies stronger
integrability conditions. The idea is to applyMarkov’s inequality to a convenient transform-
ation of Z – EZ rather than to just |Z – EZ|. If φ denotes a nondecreasing and nonnegative
function defined on a (possibly infinite) interval I ⊂ R, and if Y denotes a random variable
taking values in I, thenMarkov’s inequality implies that for every t ∈ I with φ(t) > 0,

P {Y ≥ t} ≤ P
{
φ(Y) ≥ φ(t)

} ≤ Eφ(Y)
φ(t)

. (2.1)

The most common application of this is in Chebyshev’s inequality, obtained by taking
φ(t) = t2 over I = (0,∞) and Y = |Z – EZ|. In this case we get

P
{
|Z – EZ| ≥ t

} ≤ Var (Z)
t2

.
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More generally, we may take φ(t) = tq for some q > 0. Then for all t > 0 we have

P
{
|Z – EZ| ≥ t

} ≤ E
[
|Z – EZ|q

]
tq

.

If the random variable Z is such that E|Z|q < ∞ for all q > 0 then one may choose the
value of q to optimize the obtained upper bound.

The prominent role of Chebyshev’s inequality is not only explained historically, but also
because among all the absolute moments of the formE

[
|Z – EZ|q

]
, the variance is typically

the easiest to handle. This is certainly the case whenZ is a sum of independent random vari-
ables Z = X1 + · · · + Xn. In this case, since the expected value of a product of independent
random variables equals the product of their expectations, we have

Var (Z) =
n∑
i=1

Var (Xi)

and Chebyshev’s inequality becomes

P

{
1
n

∣∣∣∣∣
n∑
i=1

(Xi – EXi)

∣∣∣∣∣ ≥ t

}
≤ σ 2

nt2
,

where σ 2 = n–1
∑n

i=1 Var (Xi).
There is a whole family of choices of the function φ for which the upper tail bound

obtained byMarkov’s inequality can be conveniently handled for sums of independent ran-
dom variables. These are exponential functions of the form φ(t) = eλt where λ is a positive
number. In this case Markov’s inequality implies

P {Z ≥ t} ≤ EeλZ

eλt
,

that is, the moment generating function F(λ) = EeλZ, defined for all λ ∈ R, appears in the
upper bound. If Z = X1 + · · · + Xn is a sum of independent random variables, then by
independence,

Eeλ
∑n

i=1(Xi–EXi) =
n∏
i=1

Eeλ(Xi–EXi).

This simple observation forms the basis of the Cramér–Chernoff method that we study in
the next section. The main idea is to control the moment-generating function of a ran-
dom variable and then to optimize, in λ, the tail bound obtained by Markov’s inequality.
Even though moment bounds are sharper than the ones obtained by the Cramér–Chernoff
method (see Exercise 2.5), the advantages offered by the equation abovemake theCramér–
Chernoff method an attractive and convenient tool for bounding tail probabilities of
sums of independent random variables. When the moment-generating function exists for
non-zero values of λ, this technique leads to exponential bounds for the tail

P
{
|Z – EZ| ≥ t

}
.
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Since this probability is bounded by

P {Z – EZ ≥ t} + P {EZ – Z ≥ t} ,

considering either Z̃ = Z – EZ or Z̃ = EZ – Z, we can focus on exponential bounds for
P {Z ≥ t} where Z is a centered random variable.

2.2 The Cramér–Chernoff Method

In this section we describe and formalize the Cramér–Chernoff bounding method. This
method determines the best possible bound for a tail probability that one can possibly
obtain using Markov’s inequality with an exponential function φ(t) = eλt in (2.1). This
simple technique leads to surprisingly sharp bounds in many cases. We work out some
simple examples.

Let Z be a real-valued random variable. For λ ≥ 0, Markov’s inequality (2.1) implies

P {Z ≥ t} ≤ e–λtEeλZ.

Since this inequality holds for all values of λ ≥ 0, one may choose λ to minimize the upper
bound. Defining the logarithm of the moment-generating function as

ψZ (λ) = logEeλZ for all λ ≥ 0,

and introducing

ψ∗
Z (t) = sup

λ≥0
(λt – ψZ (λ)),

we obtain Chernoff’s inequality:

P {Z ≥ t} ≤ exp (–ψ∗
Z (t)).

The functionψ∗
Z is called theCramér transform of Z. SinceψZ (0) = 0,ψ∗

Z is a nonnegative
function. If EZ exists, then the convexity of the exponential function and Jensen’s inequal-
ity imply that ψZ (λ) ≥ λEZ and therefore, for all negative values of λ, λt – ψZ (λ) ≤ 0
whenever t ≥ EZ. This means that we may formally extend the supremum over all λ ∈ R

in the definition of the Cramér transform:

ψ∗
Z (t) = sup

λ∈R

(λt – ψZ (λ)).

The expression of the right-hand side is known as the Fenchel–Legendre dual function ofψZ.
Thus, at every t ≥ EZ, the Cramér transformψ∗

Z (t) coincides with the Fenchel–Legendre
dual.
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Of course Chernoff’s inequality is trivial whenever ψ∗
Z (t) = 0. This is the case if

ψZ (λ) = ∞ for all positive λ or if t ≤ EZ (using again the lower bound ψZ(λ) ≥ λEZ).
To avoid such trivialities, we assume that there exists aλ > 0 such thatEeλZ < ∞. It is easy
to see (e.g. by applying Hölder’s inequality) that the set of all such positive values of λ is an
interval whose left end point equals 0. Denote by b the supremum of this interval so that
0 < b ≤ ∞. ThenψZ is convex (strictly convex whenever Z is not almost surely constant)
and infinitely many times differentiable on I = (0, b).

The case when Z is centered (i.e. EZ = 0) is of special interest. In such a caseψZ is con-
tinuously differentiable on [0, b) with ψ ′

Z(0) = ψZ(0) = 0. We can also write the Cramér
transform as ψ∗

Z(t) = supλ∈I (λt – ψZ(λ)). We leave the proof of these basic properties of
ψZ to the reader (see Exercise 2.6).

Differentiability of ψZ implies that the Cramér transform can be computed by differ-
entiating λt – ψZ(λ) with respect to λ. The optimizing value of λ is found by setting the
derivative to zero, that is,

ψ∗
Z(t) = λtt – ψZ(λt)

where λt is such that ψ ′
Z(λt) = t. The strict convexity of ψZ implies that ψ ′

Z has an
increasing inverse (ψ ′

Z)
–1 on the intervalψ ′

Z(I)
def= (0,B) and therefore, for any t ∈ (0,B),

λt = (ψ ′
Z)

–1 (t).

In the rest of this section we use this simple formula to compute the Cramér transform
explicitly in three illustrative cases.

Normal random variables Let Z be a centered normal random variable with variance
σ 2. Then

ψZ(λ) =
λ2σ 2

2
and λt =

t
σ 2

and therefore, for every t > 0,

ψ∗
Z(t) =

t2

2σ 2 .

Hence, Chernoff’s inequality implies, for all t > 0,

P {Z ≥ t} ≤ e–t
2/(2σ 2).

Chernoff ’s inequality appears to be quite sharp in this case. In fact, one can show that it
cannot be improved uniformly by more than a factor of 1/2 (see Exercise 2.7).
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Poisson random variables Let Y be a Poisson random variable with parameter v, that
is, P{Y = k} = e–vvk/k! for all k = 0, 1, 2, . . .. Let Z = Y – v be the corresponding centered
variable. Then by direct calculation,

EeλZ = e–λv
∞∑
k=0

eλke–v
vk

k!
= e–λv–v

∞∑
k=0

(
veλ
)k

k!
= e–λv–veve

λ

,

and consequently,

ψZ(λ) = v
(
eλ – λ – 1

)
and λt = log

(
1 +

t
v

)
.

Therefore the Cramér transform equals, for every t > 0,

ψ∗
Z(t) = vh

(
t
v

)
where the function h is defined, for all x ≥ –1, by h(x) = (1 + x) log(1 + x) – x. Similarly,
for every t ≤ v,

ψ∗
–Z(t) = vh

(
–
t
v

)
.

Bernoulli randomvariables In our third principal example, let Y be a Bernoulli random
variable with probability of success p, that is, P{Y = 1} = 1 – P{Y = 0} = p. Denote by
Z = Y – p the centered version of Y . If 0 < t < 1 – p, we have

ψZ(λ) = log
(
peλ + 1 – p

)
– λp and λt = log

(1 – p) (p + t)
p (1 – p – t)

and therefore, for every t ∈ (0, 1 – p),

ψ∗
Z(t) = (1 – p – t) log

1 – p – t
1 – p

+ (p + t) log
p + t
p

.

Equivalently, setting a = t + p for every a ∈ (p, 1),

ψ∗
Z(t) = hp (a)

def= (1 – a) log
1 – a
1 – p

+ a log
a
p
.

We note here that hp(a) is just the Kullback–Leibler divergence D(Pa‖Pp) between a
Bernoulli distribution Pa of parameter a and a Bernoulli distribution Pp of parameter p (see
Chapter 4 for the definition).
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Sums of independent random variables The reason why Chernoff’s inequality
became popular is that it is very simple to usewhen applied to a sumof independent random
variables. As an illustration, assume that Z = X1 + · · · + Xn where X1, . . . ,Xn are inde-
pendent and identically distributed real-valued random variables. Denote the logarithm of
the moment-generating function of the Xi by ψX(λ) = logEeλXi , and the corresponding
Cramér transform byψ∗

X(t). Then, by independence, for all λ for whichψX(λ) < ∞,

ψZ(λ) = logEeλ
∑n

i=1 Xi = log
n∏
i=1

EeλXi = nψX(λ)

and consequently,

ψ∗
Z(t) = nψ∗

X

(
t
n

)
.

As an example, consider a random variable Y with binomial distribution with paramet-
ers n and p. In other words, Y is the sum of n independent and identically distributed
Bernoulli (p) random variables. Then, for all 0 < t < n(1 – p), the Cramér transform of
Z = Y – np equals

ψ∗
Z(t) = nhp(t/n + p)

and therefore, by Chernoff’s inequality,

P {Z ≥ t} ≤ exp
(
–nhp(t/n + p)

)
.

We refer to the exercises for several simple versions of Chernoff’s inequality for binomial
random variables.

2.3 Sub-Gaussian RandomVariables

Many important classes of random variables have tail probabilities decreasing at least as
rapidly as normally distributed random variables. In order to facilitate the exploration of
this phenomenon, we find it useful to formalize the notion of a sub-Gaussian random vari-
able. There are several ways to do this and we propose the following definition, based on
the logarithmic moment-generating function ψX(λ) = logEeλX of a random variable X: A
centered random variable X is said to be sub-Gaussianwith variance factor v if

ψX(λ) ≤ λ2v
2

for every λ ∈ R.

We denote the collection of such random variables by G(v).
Note that this definition does not require the variance of X to be equal to v, just that it is

bounded by v (see Exercise 2.16). This definition is natural as we know from the previous
section that exp (λ2v/2) is the moment-generating function of a centered normal random
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variable Y with variance v. Hence, the above definition says that a centered random variable
X belongs to G (v) if the moment-generating function of X is dominated by the moment-
generating function of Y . This notion is also convenient because it is naturally stable under
convolution in the sense that ifX1, . . . ,Xn are independent such that for every i,Xi ∈ G (vi),
then

∑n
i=1 Xi ∈ G

(∑n
i=1 vi

)
.

Characterization Next we connect the notion of a sub-Gaussian random variable
with some other standard ways of defining sub-Gaussian distributions. First observe that
Chernoff’s inequality implies that the tail probabilities of a sub-Gaussian random variable
are dominated by the correspondingGaussian tail probabilities.More precisely, ifX belongs
to G(v), then for every t > 0,

P {X > t} ∨ P {–X > t} ≤ e–t
2/(2v)

where a ∨ b denotes the maximum of a and b. In fact, one can characterize sub-Gaussian
variables in terms of their tail probabilities and also in terms of the growth of theirmoments,
as summarized in the following theorem.

Theorem 2.1 Let X be a random variable with EX = 0. If for some v > 0

P {X > x} ∨ P {–X > x} ≤ e–x
2/(2v) for all x > 0 (2.2)

then for every integer q ≥ 1,

E
[
X2q] ≤ 2q!(2v)q ≤ q!(4v)q. (2.3)

Conversely, if for some positive constant C

E
[
X2q] ≤ q!Cq,

then X ∈ G(4C) (and therefore (2.2) holds with v = 4C).

Proof Assume first (2.2). We may assume that v = 1 since otherwise one can apply the
result for the random variable X/

√
v. We have

E
[
X2q] = ∫ ∞

0
P
{
|X|2q > x

}
dx

= 2q
∫ ∞

0
x2q–1P

{
|X| > x

}
dx ≤ 4q

∫ ∞

0
x2q–1e–x

2/2dx.

By setting x =
√
2t, the previous inequality becomes

E
[
X2q] ≤ 4q

∫ ∞

0
(2t)q–1e–tdt = 2q+1q!,

which implies (2.3). Conversely, assume E
[
X2q] ≤ q!Cq and introduce an independ-

ent copy X′ of X. Then by symmetry of X – X′ we have
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EeλXEe–λX = Eeλ(X–X
′) =

∞∑
q=0

λ2qE
[
(X – X′)2q

]
(2q)!

for every λ ∈ R. Now, by convexity of x → x2q,

E
[
(X – X′)2q

]
≤ 22q–1

(
E
[
X2q] + E

[
X′2q]) = 22qE

[
X2q]

and therefore, using our assumption for the moments of X, we have

EeλXEe–λX =
∞∑
q=0

λ2qE
[
(X – X′)2q

]
(2q)!

≤
∞∑
q=0

λ2q22qCqq!
(2q)!

.

Observe that since X is centered, Ee–λX ≥ 1 and that for every integer q ≥ 1,

(2q)!
q!

=
q∏
j=1

(q + j) ≥
q∏
j=1

(2j) = 2qq!.

Using these observations, we conclude that

EeλX ≤
∞∑
q=0

λ2q2qCq

q!
= e2λ

2C,

that is, X ∈ G (4C). �

Finally, we mention that the growth condition for the moments of X given in Theorem
2.1 is equivalent to another condition that is often used as an alternative definition of sub-
Gaussian variables. As this condition states that for some α > 0,

E exp
(
αX2) ≤ 2 (2.4)

then clearly

∞∑
q=1

αqE
[
X2q]

q!
≤ 1,

which implies that E
[
X2q] ≤ α–qq! (and therefore that X ∈ G (4/α)). Conversely, if

E
[
X2q

] ≤ Cqq! for every integer q (which holds with C = 4v whenever X ∈ G(v)), then,
setting α = 1/(2C),

E exp
(
αX2) = ∞∑

q=0

αqE
[
X2q

]
q!

≤
∞∑
q=0

2–q = 2.

Therefore, for a centered random variable X, condition (2.4) holds for some positive α if,
and only if, X is sub-Gaussian with variance factor v, for some v ∈ [2/α, 4/α].
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Bounded variables Bounded variables are an important class of sub-Gaussian random
variables. The sub-Gaussian property of bounded random variables is established by the
following lemma:

Lemma2.2 (HOEFFDING’S LEMMA)Let Y be a random variable withEY = 0, taking values
in a bounded interval [a, b] and let ψY(λ) = logEeλY . Then ψ ′′

Y (λ) ≤ (b – a)2/4 and
Y ∈ G ((b – a)2/4).

Proof Observe first that ∣∣∣∣Y –
(b + a)

2

∣∣∣∣ ≤ (b – a)
2

and therefore

Var (Y) = Var (Y – (b + a) /2) ≤ (b – a)2

4
.

Now, let P denote the distribution of Y and let Pλ be the probability distribution with
density

x → e–ψY (λ)eλx

with respect toP. SincePλ is concentrated on [a, b], the variance of a randomvariableZ
with distribution Pλ is bounded by (b – a)2/4. Hence, by an elementary computation,

ψ ′′
Y (λ) = e–ψY (λ)E

[
Y2eλY

]
– e–2ψY (λ)

(
E
[
YeλY

])2
= Var (Z) ≤ (b – a)2

4
.

The sub-Gaussian property follows by noting that ψY (0) = ψ ′
Y (0) = 0, and by

Taylor’s theorem that implies that, for some θ ∈ [0, λ],

ψY (λ) = ψY(0) + λψ ′
Y(0) +

λ2

2
ψ ′′
Y (θ) ≤

λ2(b – a)2

8
. �

The upper bound on the variance factor is sharp in the special case of a Rademacher ran-
dom variable X whose distribution is defined by P{X = –1} = P{X = 1} = 1/2. Then one
may take a = –b = 1 and Var (X) = 1 = (b – a)2 /4.

2.4 Sub-Gamma RandomVariables

Apart from sub-Gaussian random variables, we will often encounter random variables that
are not quite sub-Gaussian, but nearly. In order to understand these variables, we consider
here a somewhat less stringent condition on themoment-generating function. A real-valued
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centered random variableX is said to be sub-gamma on the right tail with variance factor v and
scale parameter c if

ψX(λ) ≤ λ2v
2(1 – cλ)

for every λ such that 0 < λ < 1/c.

We denote the collection of such random variables by �+(v, c). Similarly, X is said to be
sub-gamma on the left tail with variance factor v and scale parameter c if –X is sub-gamma on
the right tail with variance factor v and tail parameter c. We denote the collection of such
random variables by�–(v, c). Finally,X is simply said to be sub-gamma with variance factor v
and scale parameter c ifX is sub-gamma both on the right and left tails with the same variance
factor v and scale parameter c. The collection of such randomvariables is denoted by�(v, c).
Observe that �(v, 0) = G(v). To explain the terminology, consider a random variable Y
with gamma distribution with parameters a, b ≥ 0. Then its centered version X = Y – EY is
a typical example of a sub-gamma variable. To see this, recall first that Y has density

f (x) =
xa–1e–x/b

�(a)ba
, x ≥ 0

where �(a) =
∫∞
0 xa–1e–xdx is Euler’s Gamma function. It is easy to see that EY = ab and

Var (Y) = ab2. Then, for all λ < 1/b,

EeλX =
∫ ∞

0
eλ(x–ab)f (x)dx = exp (–λab – a log(1 – λb)) .

It is also easy to see that for all u ∈ (0, 1),

– log(1 – u) – u ≤ u2

2(1 – u)

(see Exercise 2.8), so the logarithmic moment-generating function of X may be bounded,
for all λ ∈ (0, 1/b), as

ψX(λ) = a (– log(1 – λb) – λb) ≤ λ2v
2(1 – cλ)

where v = ab2 and c = b. This shows that X is a sub-gamma random variable on the right
tail, with variance factor ab2 and scale parameter b, that is, X belongs to �+ (ab2, b). Since
the distribution of X is not symmetric around 0, the behavior of X on the left tail is slightly
different. Indeed, for all u < 0,

– log(1 – u) – u ≤ u2

2
,

and therefore, for all λ < 0,

ψX(λ) = a (– log(1 – λb) – λb) ≤ λ2v
2



S U B -G AMMA RANDOM VAR I A B L E S | 29

where v = ab2. This shows that X is more concentrated on the left tail than on the right
tail. In fact, the left tail of X has a sub-Gaussian behavior. X belongs to �– (ab2, 0) and to
�+ (ab2, b) and therefore, to� (ab2, b).

Characterization Similarly to the sub-Gaussian property, the sub-gamma property can
be characterized in terms of tail ormoment conditions.We start by computing the Fenchel–
Legendre dual function of

ψ(λ) =
vλ2

2 (1 – cλ)
.

Setting

h1(u) = 1 + u –
√
1 + 2u for u > 0,

it follows by elementary calculation that for every t > 0,

ψ∗(t) = sup
λ∈(0,1/c)

(
tλ –

λ2v
2(1 – cλ)

)
=

v
c2
h1
(
ct
v

)
. (2.5)

Since h1 is an increasing function from (0,∞) onto (0,∞) with inverse function
h–11 (u) = u +

√
2u for u > 0, we finally get

ψ∗–1(u) =
√
2vu + cu.

Hence, Chernoff’s inequality implies that whenever X is a sub-gamma random variable on
the right tail with variance factor v and scale parameter c, for every t > 0, we have

P {X > t} ≤ exp
(
–
v
c2
h1
(
ct
v

))
,

or equivalently, for every t > 0,

P
{
X >

√
2vt + ct

}
≤ e–t .

Therefore, if X belongs to�(v, c), then for every t > 0,

P
{
X >

√
2vt + ct

}
∨ P

{
–X >

√
2vt + ct

}
≤ e–t .

Such a behavior for the tails essentially characterizes sub-gamma random variables. More
precisely, we have the following.

Theorem 2.3 Let X be a centered random variable. If for some v > 0

P
{
X >

√
2vt + ct

}
∨ P

{
–X >

√
2vt + ct

}
≤ e–t for every t > 0, (2.6)
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then for every integer q ≥ 1

E
[
X2q] ≤ q!(8v)q + (2q)!(4c)2q. (2.7)

Conversely, if for some positive constants A and B,

E
[
X2q] ≤ q!Aq + (2q)!B2q, (2.8)

then X ∈ � (4 (A + B2) , 2B) (and therefore (2.6) also holds with v = 4 (A + B2) and
c = 2B).

Proof Assume first that (2.6) holds. Using integration by parts,

E
[
X2q] = 2q

∫ ∞

0
x2q–1P

{
|X| > x

}
dx.

Setting x =
√
2vt + ct and using (2.6), this implies

E
[
X2q] ≤ 4q

∫ ∞

0

(√
2vt + ct

)2q–1 (√
2vt + 2ct
2t

)
e–t

t
dt

≤ 2q
∫ ∞

0

(√
2vt + 2ct

)2q e–t
t
dt.

By convexity of x2q, (a + b)2q ≤ 22q–1 (a2q + b2q), and therefore

E
[
X2q] ≤ q22q

∫ ∞

0

(
(2tv)q + (2ct)2q

)
e–tdt

≤ 22q
(
q!2qvq +

(2q)!
2

(2c)2q
)
,

(2.7) holds. Conversely, assuming (2.8), we may use the same symmetrization
trick as for the characterization of the sub-Gaussian property in terms of moments.
Considering an independent copy X′ of X, we have

EeλXEe–λX = Eeλ(X–X
′) =

∞∑
q=0

λ2qE
[
(X – X′)2q

]
(2q)!

.

By convexity, again we note that

E
[
(X – X′)2q

]
≤ 22q–1

(
E
[
X2q] + E

[
X′2q]) = 22qE

[
X2q]

and plugging this inequality together with (2.8) into the previous equation leads to

EeλXEe–λX ≤
∞∑
q=0

λ2q22q (Aqq! + B2q(2q)!)
(2q)!

.
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Using again q!/(2q)! ≤ 2–q/q! and that EX = 0 implies Ee–λX ≥ 1, we obtain, for
every λwith 2B |λ| < 1,

EeλX ≤ e2Aλ2
+

4B2λ2

1 – 4B2λ2 ≤ e2Aλ2
+

4B2λ2

1 – 2B |λ|
.

The final result follows from the elementary inequality

ex + y ≤ ex+y

which holds for all x, y > 0. �

2.5 AMaximal Inequality

The purpose of this section is to show how information about the Cramér transform of
random variables in a finite collection can be used to bound the expectedmaximumof these
random variables.

The main idea is perhaps most transparent if we consider sub-Gaussian random
variables. Let Z1, . . . ,ZN be real-valued random variables where a v > 0 exists such that
for every i = 1, . . . ,N, the logarithm of the moment-generating function of Zi satisfies
ψZi(λ)≤ λ2v/2 for all λ > 0. Then, by Jensen’s inequality,

exp
(

λE max
i=1,...,N

Zi

)
≤ E exp

(
λ max

i=1,...,N
Zi

)
= E max

i=1,...,N
eλZi

≤
N∑
i=1

EeλZi ≤ Neλ
2v/2.

Taking logarithms on both sides, we have

E max
i=1,...,N

Zi ≤ logN
λ

+
λv
2
.

The upper bound is minimized for λ =
√
2 logN/v, which yields

E max
i=1,...,N

Zi ≤
√
2v logN.

This simple bound is asymptotically sharp if the Zi are i.i.d. normal random variables (see
Exercise 2.17).

Of course, the argument above may be generalized beyond sub-Gaussian variables. Next
we formalize such a general inequality but first we start with a technical result that estab-
lishes a useful formula for the inverse of the Fenchel–Legendre dual of a smooth convex
function.



32 | B A S I C I N EQUA L I T I E S

Lemma 2.4 Let ψ be a convex and continuously differentiable function defined on the interval
[0, b) where 0 < b ≤ ∞. Assume thatψ (0) = ψ ′ (0) = 0 and set, for every t ≥ 0,

ψ∗(t) = sup
λ∈(0,b)

(λt – ψ(λ)) .

Then ψ∗ is a nonnegative convex and nondecreasing function on [0,∞). Moreover, for
every y ≥ 0, the set

{
t ≥ 0 : ψ∗(t) > y

}
is non-empty and the generalized inverse of ψ∗,

defined by

ψ∗–1(y) = inf
{
t ≥ 0 : ψ∗(t) > y

}
,

can also be written as

ψ∗–1(y) = inf
λ∈(0,b)

[
y + ψ(λ)

λ

]
.

Proof By definition, ψ∗ is the supremum of convex and nondecreasing functions on
[0,∞) and ψ∗(0) = 0 and therefore, ψ∗ is a nonnegative, convex, and nondecreas-
ing function on [0,∞). Moreover, given λ ∈ (0, b), since ψ∗(t) ≥ λt – ψ(λ), ψ∗
is unbounded, which shows that for every y ≥ 0, the set

{
t ≥ 0 : ψ∗(t) > y

}
is

non-empty. Defining

u = inf
λ∈(0,b)

[
y + ψ(λ)

λ

]
,

for every t ≥ 0, we have u ≥ t if, and only if, for every λ ∈ (0, b)

y + ψ(λ)
λ

≥ t.

Since this inequality implies y ≥ ψ∗(t), we have
{
t ≥ 0 : ψ∗(t) > y

}
= (u,∞). This

proves that u = ψ∗–1(y) by definition ofψ∗–1. �

The next result offers a convenient bound for the expected value of the maximum of
finitely many exponentially integrable random variables. This type of bound has been used
in so-called chaining arguments for bounding suprema of Gaussian or empirical processes
(see Chapter 13).

Theorem 2.5 Let Z1, . . . ,ZN be real-valued random variables such that for every λ ∈ (0, b)
and i = 1, . . . ,N, the logarithm of the moment-generating function of Zi satisfies
ψZi(λ) ≤ ψ(λ) where ψ is a convex and continuously differentiable function on [0, b)
with 0 < b ≤ ∞ such thatψ(0) = ψ ′(0) = 0. Then

E max
i=1,...,N

Zi ≤ ψ∗–1(logN).
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In particular, if the Zi are sub-Gaussian with variance factor v, that is, ψ(λ) = λ2v/2 for
every λ ∈ (0,∞), then

E max
i=1,...,N

Zi ≤
√
2v logN.

Proof By Jensen’s inequality,

exp
(

λE max
i=1,...,N

Zi

)
≤ E exp

(
λ max

i=1,...,N
Zi

)
= E max

i=1,...,N
exp (λZi)

for any λ ∈ (0, b). Thus, recalling thatψZi(λ) = logE exp (λZi),

exp
(

λE max
i=1,...,N

Zi

)
≤

N∑
i=1

E exp (λZi) ≤ N exp (ψ(λ)) .

Therefore, for any λ ∈ (0, b),

λE max
i=1,...,N

Zi – ψ(λ) ≤ logN,

which means that

E max
i=1,...,N

Zi ≤ inf
λ∈(0,b)

(
logN + ψ(λ)

λ

)
and the result follows from Lemma 2.4. �

Wemay also apply Theorem 2.5 to establish a bound for the expected maximum of sub-
gamma random variables.

Corollary 2.6 Let Z1, . . . ,ZN be real-valued random variables belonging to �+(v, c) (see
Section 2.4 for the definition). Then

E max
i=1,...,N

Zi ≤
√
2v logN + c logN.

Example 2.7 (CHI-SQUARED DISTRIBUTION) An important example of gamma-
distributed random variables is a chi-square random variable. If p is a positive integer,
a gamma random variable with parameters a = p/2 and b = 2 is said to have chi-square
distribution with p degrees of freedom. (Note that if Y1, . . . , Yp are independent stand-
ard normal random variables then

∑p
i=1 Y2

i has chi-square distribution with p degrees of
freedom.) Corollary 2.6 implies that if X1, . . . ,XN have chi-square distribution with p
degrees of freedom, then

E
[
max

i=1,...,N
Xi – p

]
≤ 2

√
p logN + 2 logN.
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2.6 Hoeffding’s Inequality

In the next few sections we establish some of the classical inequalities for tail probabilit-
ies of sums of independent real-valued random variables. The Cramér–Chernoff method is
especially relevant in this case. In fact, it was invented for the study of sums of independent
random variables. The key to success is that the exponential moment-generating function
converts sums into products and the expected value of a product of independent random
variables is just the product of their expected values. Indeed if X1, . . . ,Xn are independent
random variables with a finite mean such that for some non-empty interval I, EeλXi is finite
for all i ≤ n and all λ ∈ I, then defining

S =
n∑
i=1

(Xi – EXi) ,

by independence, for all λ ∈ I,

ψS(λ) =
n∑
i=1

logEeλ(Xi–EXi).

This expression may now be bounded under various assumptions on the Xi and Chernoff’s
inequality may be used. We start with the perhaps simplest version for sums of bounded
random variables. Recall that Hoeffding’s lemma (Lemma 2.2) establishes a sub-Gaussian
property of bounded random variables. Hoeffding’s inequality is a straightforward con-
sequence of Hoeffding’s lemma and Chernoff’s inequality.

Indeed, if Xi takes its values in a bounded interval [ai, bi], for all i ≤ n, then by
Lemma 2.2,

ψS(λ) ≤ λ2

8

n∑
i=1

(bi – ai)2 .

The obtained tail inequality is the following.

Theorem 2.8 (HOEFFDING’S INEQUALITY) Let X1, . . . ,Xn be independent random vari-
ables such that Xi takes its values in [ai, bi] almost surely for all i ≤ n. Let

S =
n∑
i=1

(Xi – EXi) .

Then for every t > 0,

P {S ≥ t} ≤ exp

(
–

2t2∑n
i=1 (bi – ai)

2

)
.

We may apply Hoeffding’s inequality to sums of random variables of the form
Xi = εiαi where ε1, . . . , εn are independent Rademacher random variables (i.e. symmetric
sign variables withP{εi = 1} = P{εi = –1} = 1/2) andα1, . . . ,αn are real numbers.We get

P{S ≥ t} ≤ exp
(
–

t2

2
∑n

i=1 α2
i

)
.
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Since in this case Var (S) =
∑n

i=1 α2
i , Hoeffding’s inequality implies a bona fide

sub-Gaussian tail inequality. In general, however, the variance of S may be much smaller
than

∑n
i=1 (bi – ai)

2. In such cases sharper bounds are called for. Bennett’s and Bernstein’s
inequalities discussed in the next sections provide such improvements.

2.7 Bennett’s Inequality

As in the proof of Hoeffding’s inequality, our starting point is the fact that the logarithmic
moment-generating function of an independent sum equals the sum of the logarithmic
moment-generating functions of the centered summands, that is,

ψS(λ) =
n∑
i=1

(
logEeλXi – λEXi

)
.

Using log u ≤ u – 1 for u > 0,

ψS(λ) ≤
n∑
i=1

E
[
eλXi – λXi – 1

]
. (2.9)

Both Bennett’s andBernstein’s inequalitiesmay be derived from this bound, under different
integrability conditions for the Xi.

Theorem 2.9 (BENNETT’S INEQUALITY) Let X1, . . . ,Xn be independent random variables
with finite variance such that Xi ≤ b for some b > 0 almost surely for all i ≤ n. Let

S =
n∑
i=1

(Xi – EXi)

and v =
∑n

i=1 E
[
X2
i
]
. If we write φ(u) = eu – u – 1 for u ∈ R, then, for all λ > 0,

logEeλS ≤ n log
(
1 +

v
nb2

φ(bλ)
)
≤ v

b2
φ(bλ),

and for any t > 0,

P{S ≥ t} ≤ exp
(
–
v
b2
h
(
bt
v

))
where h(u) = (1 + u) log(1 + u) – u for u > 0.

Proof By homogeneity we may assume that b = 1. Note that u–2φ(u) is a nondecreasing
function of u ∈ R (where at 0 we continuously extend the function). Hence, for all
i ≤ n and λ > 0,

eλXi – λXi – 1 ≤ X2
i
(
eλ – λ – 1

)
which, following expectations, yields

EeλXi – λEXi – 1 ≤ E
[
X2
i
]
φ(λ).

Here, we refrain from invoking log u ≤ u – 1, and sum these inequalities for
i = 1, . . . , n so as to get,
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ψS(λ) ≤
n∑
i=1

(
log

(
1 + λEXi + E

[
X2
i
]
φ(λ)

)
– λEXi

)
.

Now, using the concavity of the logarithm,

ψS(λ) ≤ n
(
log

(
1 + λ

∑n
i=1 EXi

n
+
v
n
φ(λ)

)
– λ

∑n
i=1 EXi

n

)
.

Finally, using log(1 + u) ≤ u, the latter inequality entails

ψS(λ) ≤ vφ(λ).

Recall from Section 2.2 that the upper bound is just the logarithm of the moment-
generating function of a centered Poisson random variable with parameter v.
Therefore, the Cramér transform of S is also bounded by that of a corresponding
Poisson random variable, that is,

ψ∗
S (t) ≥ vh

(
t
v

)
which proves the theorem via Chernoff’s inequality. �

The easy-to-prove inequality

h(u) ≥ u2

2(1 + u/3)

(see Exercise 2.8) may help interpret Bennett’s inequality. This inequality implies that,
under the conditions of Theorem 2.9,

P{S ≥ t} ≤ exp
(
–

t2

2(v + bt/3)

)
. (2.10)

This is known as Bernstein’s Inequality. For t � v/b, it loses a logarithmic factor in the
exponent with respect to Bennett’s inequality. On the other hand, if v is the dominant
term in the denominator of the exponent, Bennett’s and Bernstein’s inequalities are almost
equivalent and both provide a sub-Gaussian type inequality.

In the next section we show that Bernstein’s inequality holds under weaker assumptions
than boundedness.

2.8 Bernstein’s Inequality

The next inequality is somewhatmore general than the classical formof Bernstein’s inequal-
ity shown in the previous section. Here, instead of boundedness, we only require an
appropriate control of moments.
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Theorem 2.10 (BERNSTEIN’S INEQUALITY) Let X1, . . . ,Xn be independent real-valued
random variables. Assume that there exist positive numbers v and c such that∑n

i=1 E
[
X2
i
] ≤ v and

n∑
i=1

E
[
(Xi)

q
+
] ≤ q!

2
vcq–2 for all integers q ≥ 3,

where x+ = max(x, 0).
If S =

∑n
i=1 (Xi – EXi), then for all λ ∈ (0, 1/c) and t > 0,

ψS(λ) ≤ vλ2

2(1 – cλ)
and

ψ∗
S (t) ≥

v
c2
h1
(
ct
v

)
,

where h1(u) = 1 + u –
√
1 + 2u for u > 0. In particular, for all t > 0,

P
{
S ≥ √

2vt + ct
}
≤ e–t .

Proof Recall the notation φ(u) = eu – u – 1 and observe that for u ≤ 0,

φ(u) ≤ u2

2
.

Hence, for λ > 0, we have, for all i ≤ n,

φ (λXi) ≤ λ2X2
i

2
+

∞∑
q=3

λq (Xi)q+
q!

which implies, by the monotone convergence theorem,

Eφ (λXi) ≤ λ2E
[
X2
i
]

2
+

∞∑
q=3

λqE
[
(Xi)

q
+
]

q!
,

and therefore, by the assumptions of the theorem,

n∑
i=1

Eφ (λXi) ≤ v
2

∞∑
q=2

λqcq–2.

This proves, on the one hand, that for any λ ∈ (0, 1/c), eλXi is integrable for all i ≤ n,
and on the other hand, using inequality (2.9), that for λ ∈ (0, 1/c),

ψS(λ) ≤
n∑
i=1

Eφ (λXi) ≤ vλ2

2(1 – cλ)
.
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Therefore,

ψ∗
S (t) ≥ sup

λ∈(0,1/c)

(
tλ –

λ2v
2(1 – cλ)

)
and the stated bound for ψ∗

S (t) follows from (2.5). The tail inequality of the theorem
follows easily from Chernoff’s inequality and the calculations shown at the beginning
of Section 2.4. �

In some cases the following form of Bernstein’s inequality is more convenient.

Corollary 2.11 Let X1, . . . ,Xn be independent real-valued random variables satisfying the
conditions of Theorem 2.10 and let S =

∑n
i=1 (Xi – EXi). Then for all t > 0,

P{S ≥ t} ≤ exp
(
–

t2

2(v + ct)

)
.

Proof The corollary follows from the elementary inequality

h1(u) ≥ u2

2(1 + u)
, u > 0

(see Exercise 2.8). Thus, Theorem 2.10 implies that

ψ∗
S (t) ≥

t2

2(v + ct)

and the statement follows from Chernoff’s inequality. �

Finally, note that one may recover (2.10) from Corollary 2.11. Indeed if X1, . . . ,Xn are
independent such that Xi ≤ b almost surely for all i ≤ n, then the conditions of Theorem
2.10 hold with

v =
n∑
i=1

E
[
X2
i
]

and c = b/3.

Example 2.12 (GAUSSIAN CHAOS OF ORDER TWO) As an example, we derive tail
bounds for a special second-order GaussianU-statistics, known asGaussian chaos. Let
X = (X1, . . . ,Xn) be a vector of independent standard normal random variables and
let A = (ai,j)n×n be a symmetric matrix with zeroes in its diagonal, that is, ai,i = 0 for
i = 1, . . . , n. Then the quadratic form

Z = XTAX =
n∑
i=1

n∑
j=1

ai,jXiXj

is a zero-mean random variable. To derive a concentration inequality for Z, we use the
fact that a symmetric matrix can be diagonalized, that is, decomposed as A = BT
B
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where B is an n× n orthogonal matrix (i.e. the columns of B are orthogonal vectors of
norm 1) such that B–1 = BT and
 is a diagonal matrix with the eigenvaluesμ1 . . . ,μn
of A in the diagonal entries. Denoting by bi,j the entries of the matrix B, we have

Z =
n∑
i=1

μiY2
i where Yi =

n∑
j=1

bi,jXj, i = 1, . . . , n.

By the rotational invariance of the standard multivariate normal distribution, we see
that the distribution of Y = (Y1, . . . , Yn) is the same as that of X, that is, Y1, . . . , Yn
are independent standard normal random variables. This implies that Z has the same
distribution as

n∑
i=1

μiX2
i =

n∑
i=1

μi(X2
i – 1)

where we used the fact that
∑n

i=1 μi equals the trace of the matrix A which is zero
since we assumed that A has zeros in its diagonal. As we have seen it in Section 2.5,
the logarithmic moment-generating function of X2

i – 1 equals, for all λ < 1/2,

logEeλ(X
2
i –1) =

1
2
(– log(1 – 2λ) – 2λ) ≤ λ2

1 – 2λ
.

Therefore, the logarithmic moment-generating function of the Gaussian chaos
becomes, for all λ ∈ (0, 1/(2maxi μi)),

ψZ(λ) =
n∑
i=1

1
2
(– log(1 – 2μiλ) – 2μiλ) ≤

n∑
i=1

μ2
i λ

2

1 – 2(μi)+λ
≤ λ2‖A‖2HS

1 – 2λ‖A‖

where ‖A‖HS =
(∑n

i=1 μ2
i
)1/2 is the so-called Hilbert–Schmidt norm (or Frobenius

norm) of thematrixA and ‖A‖ = maxi |μi| is the operator norm. Nowwemay use (2.5)
to obtain the following bound for the upper tail: for all t > 0,

P
{
Z > 2‖A‖HS

√
t + 2‖A‖t

}
≤ e–t ,

or, by Exercise 2.8,

P{Z > t} ≤ exp
(

–t2

4(‖A‖2HS + ‖A‖t)
)
.

2.9 RandomProjections and the Johnson–Lindenstrauss
Lemma

Next we describe an application in which Chernoff’s inequality for sums of independent
sub-Gaussian random variables plays a crucial role, in a perhaps unexpected situation. This
application is an example of the power and elegance of the probabilistic method that has
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played such an important role in a large variety of applications ranging from combinatorics
to the asymptotic geometry of Banach spaces.

The celebrated Johnson–Lindenstrauss lemma states roughly that, given an arbitrary set
of n points in a (high-dimensional) Euclidean space, there exists a linear embedding of these
points in a d-dimensional Euclidean space such that all pairwise distances are preserved
within a factor of 1± ε if d is proportional to (log n)/ε2. It is remarkable that this result does
not involve the dimension of the space to which the n points belong. In fact, the dimension
of this space may even be infinite.

To describe the problem more rigorously, consider an arbitrary set A ⊂ RD where typ-
ically, D is a large positive integer. We note here that, in fact, RD can be replaced by any
(separable) Hilbert space by a straightforward generalization of the argument. For simpli-
city, we stick to the finite-dimensional framework. In this section we consider the special
case where A = {a1, . . . , an} is a finite set of n elements, but in Sections 5.6 and 13.6 we
return to the case of general subsets. Given ε ∈ (0, 1), a map f : RD → Rd is called an
ε-isometry on A if for every pair a, a′ ∈ A, we have

(1 – ε)
∥∥a – a′∥∥2 ≤ ∥∥f (a) – f (a′)∥∥2 ≤ (1 + ε)

∥∥a – a′∥∥2 .
Now a natural question is to find the smallest possible value of d for which a linear
ε-isometry exists on A. The Johnson–Lindenstrauss lemma, stated and proved below,
ensures that when A is a finite set with cardinality n, a linear ε-isometry exists whenever
d ≥ κε–2 log n, where κ is an absolute constant. We emphasize again the remarkable fact
that this value does not depend on the dimensionD of the space.

The idea of the proof is simple: just try a random linear function to determine whether
it is an ε-isometry. While one might think that this is like looking for a needle in a haystack,
it may come as a surprise that, if the distribution of the random choice is chosen properly,
most random tries will work. This phenomenon is not uncommon in applications of the
probabilistic method.

In other words, we prove below that a randomly chosen projection of RD to Rd is, with
large probability, an ε-isometry on the finite set A if d is at least a constant times ε–2 log n.

The basic idea is to construct a randomprojectionW : RD → Rd (i.e. a linearmapping)
that is an exact isometry “in expectation,” that is, for every α ∈ RD,

E
[‖W(α)‖2] = ‖α‖2.

In other words, denoting by L2,d the space of square-integrable Rd-valued random vectors,
W is an isometry fromRD into L2,d.

To construct W , let Xi,j, i = 1, . . . , d, j = 1, . . . ,D be independent and identically dis-
tributed real-valued random variables such that EXi,j = 0 and Var (Xi,j) = 1. For every
α = (α1, . . . ,αD) ∈ RD and i ∈ {1, . . . , d}, define

Wi(α) =
D∑
j=1

αjXi,j.

Wi(α)/
√
d is the i-th component of the random vectorW(α), that is,W is defined by
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W(α) =
(

1√
d
Wi(α)

)d

i=1
.

Observe that by independence of the Xi,j, for every i = 1, . . . , d,

E
[
Wi(α)2

]
=

D∑
j=1

α2
j E
[
X2
i,j

]
= ‖α‖2.

Therefore, for every α ∈ RD,

E
[‖W(α)‖2] = 1

d

d∑
i=1

E
[
Wi(α)2

]
= ‖α‖2,

and indeed,W is an isometry fromRD into L2,d.
It remains to show that on a sufficiently small subset A ⊂ RD, the random projectionW

defines an approximate isometry with large probability. To this end, we need convenient
exponential integrability conditions on the distribution of the Xi,j. Traditionally the Xi,j are
taken to be standard normal variables. Herewe show that it suffices if they are sub-Gaussian.

Theorem 2.13 (JOHNSON–LINDENSTRAUSS LEMMA) Let A be a finite subset of RD

with cardinality n. Assume that for some v ≥ 1, Xi,j ∈ G(v) and let ε, δ ∈ (0, 1). If
d ≥ 100v2ε–2 log

(
n/
√

δ
)
, then with probability at least 1 – δ, W is an ε-isometry on A.

Proof Denote by S the unit sphere ofRD and let T be the subset of S defined by

T =
{

a – a′

‖a – a′‖ : a, a′ ∈ A, a �= a′
}
.

Then T has cardinality N ≤ n(n – 1)/2. We need to show that, under the stated
condition for d,

sup
α∈T

∣∣‖W(α)‖2 – 1∣∣ ≤ ε.

First note that for all α ∈ S and i ≤ d, using the fact that the Xi,j are sub-Gaussian,

E exp (λWi(α)) = E exp

⎛⎝λ

D∑
j=1

αjXi,j

⎞⎠
=

D∏
j=1

E exp
(
λαjXi,j

)

≤ exp

⎛⎝λ2
D∑
j=1

α2
j v/2

⎞⎠
= exp

(
λ2v/2

)
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and thereforeWi(α) ∈ G(v). Thus, by Theorem 2.1, for every integer q ≥ 2,

E
[
Wi(α)2q

] ≤ q!
2
× 4(2v)q ≤ q!

2
(4v)q.

Hence, since for each α the random variablesWi(α), i = 1, . . . , d are independent, we
may use Bernstein’s inequality (Theorem2.10) for

∑d
i=1 Wi(α)2 with v ← d(4v)2 and

c ← 4v to obtain, for every α ∈ T and t > 0,

P

{∣∣∣∣∣
d∑
i=1

(
Wi(α)2 – 1

)∣∣∣∣∣ ≥ 4v
√
2dt + 4vt

}
≤ 2e–t .

This implies, by the union bound,

P

{
sup
α∈T

∣∣∣∣∣
d∑
i=1

(
Wi(α)2 – 1

)2∣∣∣∣∣ ≥ 4v
(√

2dt + t
)}

≤ 2Ne–t ≤ n2e–t .

Setting t = log (n2/δ), we have

P

{
sup
α∈T

∣∣∣∣∣
d∑
i=1

(
Wi(α)2 – 1

)∣∣∣∣∣ ≥ 8v
(√

d log
n√
δ

)}
≤ δ

or, equivalently,

P

⎧⎪⎪⎨⎪⎪⎩sup
α∈T

∣∣‖W(α)‖2 – 1∣∣ ≥
√√√√8v log

(
n/
√

δ
)

d
+
8v log

(
n/
√

δ
)

d

⎫⎪⎪⎬⎪⎪⎭ ≤ δ.

Finally, we see that d ≥ 100v2ε–2 log
(
n/
√

δ
)
implies that

√√√√8v log
(
n/
√

δ
)

d
+
8v log

(
n/
√

δ
)

d
≤ 4ε

5
+
2ε2

25v
≤ ε

and therefore, with probability at least 1 – δ,

sup
α∈T

∣∣‖W(α)‖2 – 1∣∣ ≤ ε

which is exactly what we wanted to prove. �

Remark 2.11 Note that by working with the general assumption of sub-Gaussian ran-
dom variables, one loses a constant factor in the bound of the Johnson–Lindenstrauss
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lemma. Indeed, if we assume that the Xi,j are standard normal, then
∑d

i=1 Wi(α)2 is a
chi-squared random variable with d degrees of freedom and the inequality shown in
Example 2.7 for gamma random variables implies

P

{∣∣∣∣∣
d∑
i=1

(
Wi(α)2 – 1

)∣∣∣∣∣ ≥ 2
√
dt + 2t

}
≤ 2e–t .

This implies that with probability at least 1 – δ, W is an ε-isometry on A whenever
d ≥ 8ε–2 log

(
n/
√

δ
)
. In Section 5.6we take a closer look at randomprojections based

on standard normal variables.

2.10 Association Inequalities

Next we recall some simple association inequalities. The first result states that if f and g are
both increasing functions of a real variable, then for any random variable X, the correlation
of f (X) and g(X) is positive.

Theorem 2.14 (CHEBYSHEV’S ASSOCIATION INEQUALITY) Let f and g be nondecreasing
real-valued functions defined on the real line. If X is a real-valued random variable and Y is
a nonnegative random variable, then

E[Y]E[Y f (X)g(X)] ≥ E[Y f (X)]E[Y g(X)].

If f is nonincreasing and g is nondecreasing then

E[Y]E[Y f (X)g(X)] ≤ E[Y f (X)]E[Y g(X)].

Remark 2.12 This is a slight generalization of what is usually referred to as Chebyshev’s
association inequality which can be recovered by taking Y ≡ 1.

Proof Let the pair of random variables (X′, Y ′) be distributed as the pair (X, Y) and inde-
pendent of it. If f and g are nondecreasing, YY ′(f (X) – f (X′))(g(X) – g(X′)) ≥ 0, so
obviously

E[YY ′(f (X) – f (X′))(g(X) – g(X′))] ≥ 0.

Expand this expectation to obtain the first inequality. The proof of the second is
similar. �

An important generalization of Chebyshev’s association inequality is described as fol-
lows. A real-valued function f defined on Rn is said to be nondecreasing (nonincreasing) if
it is nondecreasing (nonincreasing) in each variable while keeping all other variables fixed
at any value.

Theorem2.15 (HARRIS’S INEQUALITY)Let f , g : Rn → R be nondecreasing functions. Let
X1, . . . ,Xn be independent real-valued random variables and define the random vector
X = (X1, . . . ,Xn) taking values inRn. Then
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E[f (X)g(X)] ≥ E[f (X)]E[g(X)].

Similarly, if f is nonincreasing and g is nondecreasing then

E[f (X)g(X)] ≤ E[f (X)]E[g(X)].

Proof Again, it suffices to prove the first inequality. We proceed by induction. For n = 1
the statement is just Chebyshev’s association inequality. Now suppose the statement
is true form < n. Then

E[f (X)g(X)] = EE[f (X)g(X)|X1, . . . ,Xn–1]
≥ E

[
E[f (X)|X1, . . . ,Xn–1]E[g(X)|X1, . . . ,Xn–1]

]
because given X1, . . . ,Xn–1, both f and g are nondecreasing functions of the n-th
variable. Now it follows by independence that the functions f ′, g′ : Rn–1 → R

defined by f ′(x1, . . . .xn–1) = E[f (X)|X1 = x1, . . . ,Xn–1 = xn–1] and g′(x1, . . . .xn–1) =
E[g(X)|X1 = x1, . . . ,Xn–1 = xn–1] are nondecreasing functions, so by the induction
hypothesis

E[f ′(X1, . . . ,Xn–1)g′(X1, . . . ,Xn–1)]
≥ E[f ′(X1, . . . ,Xn–1)]E[g′(X1, . . . ,Xn–1)]
= E[f (X)]E[g(X)]

as desired. �

2.11 Minkowski’s Inequality

We close this chapter by proving a general version of Minkowski’s inequality. The best
known versions of this inequality may be considered as triangle inequalities for Lq norms
of vectors or random variables. For example, one version states that if X1 and X2 are two
real-valued random variables, then for q ≥ 1,

E
[
|X1 + X2|q

]1/q ≤ E
[
|X1|q

]1/q + E
[
|X2|q

]1/q .
In this book (see Chapters 5 and 10), we will need the following, more general, formula-

tion of Minkowski’s inequality.

Theorem 2.16 (MINKOWSKI’S INEQUALITY) Let X and Y be independent random vari-
ables taking their values in the sets X and Y , respectively. Let f : X × Y → R be a
real-valued measurable function and define the random variable Z = f (X, Y). If q ≥ 1,
then (

EX
[
|EYZ|q

])1/q ≤ EY

[(
EX|Z|q

)1/q]
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where EX and EY denote expectations taken with respect to the distributions of X and Y,
respectively (i.e. EXZ = E[Z|Y] and EYZ = E[Z|X]).

Before proving the theorem, note that the classical version of Minkowski’s inequality
cited above may be recovered by letting Y be uniformly distributed on the set Y = {1, 2}
and defining X = (X1,X2), f (X, 1) = X1, and f (X, 2) = X2.

Proof The inequality is obvious for q ∈ {1,∞} so we may assume that 1 < q < ∞.
Without loss of generality, we may assume that Z is nonnegative. Let Y ′ be an
independent copy of Y , independent of X as well. Then

EX
[
(EYZ)q

]
= EX

[
(EY ′ f (X, Y ′))q–1 EY f (X, Y)

]
= EX

[
EY

[
(EY ′ f (X, Y ′))q–1 f (X, Y)

]]
= EY

[
EX
[
(EY ′ f (X, Y ′))q–1 f (X, Y)

]]
(by Fubini’s theorem)

≤ EY

[(
EX
[
(EY ′ f (X, Y ′))q

])(q–1)/q (EX
[
f q(X, Y)

])1/q]
(by Hölder’s inequality)

=
(
EX

[
(EY ′ f (X, Y ′))q

])1–1/q EY

[
(EX f q(X, Y))

1/q
]

=
(
EX
[
(EYZ)q

])1–1/q EY

[
(EXZq)1/q

]
.

Dividing both sides by
(
EX

[
(EYZ)q

])1–1/q, we obtain the desired inequality. �

2.12 Bibliographical Remarks

Exponential tail inequalities for sums of independent random variables have been proved
from the early days of mathematical probability theory. Among the pioneers we mention
Bernstein (1946), Craig (1933), Uspensky (1937), Chernoff (1952), Okamoto (1958),
Bennett (1962), and Hoeffding (1963).

The proof of the maximal inequality of Theorem 2.5 is based on an argument used by
Pisier (1983) to control the expectation of the supremum of variables belonging to some
Orlicz space. For exponentially integrable variables it is possible to optimize Pisier’s argu-
ment with respect to the parameter involved in the definition of the moment-generating
function. This is exactly what is done in Theorem 2.5.

Hoeffding’s lemma (Lemma 2.2) and Hoeffding’s inequality (Theorem 2.8) are due to
Hoeffding (1963). Bennett’s inequality is taken from Bennett (1962), while Bernstein’s
inequality in its original form is in Bernstein (1946). Bernstein’s inequality for unboun-
ded variables can be found in Uspensky (1937). Theorem 2.10 appears in Birgé and
Massart (1998). Note that the usual assumption in Bernstein’s inequality involves
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conditions for the absolute moments of the Xi, instead of their positive part as in Theorem
2.10. This refinement was suggested to us by Emmanuel Rio.

The inequality derived in Example 2.12 for a Gaussian chaos of order 2 is described by
Hanson and Wright (1971). The fact that a quadratic form of standard normal random
variables has the same distribution as a weighted sum of independent random variables
with chi-squared distribution is usually referred to as Cochran’s theorem. For extensions to
higher-order chaoses, we refer to Arcones and Giné (1993) and Latała (2006).

The Johnson–Lindenstrauss lemma first appears in Johnson and Lindenstrauss (1984),
though its original proof is not probabilistic. The idea of random projections was intro-
duced by Frankl andMaehara (1988, 1990), but see also Gupta and Dasgupta (2002) for a
particularly simple proof. Achlioptas (2003) considered projections based on Rademacher
random variables. The proof of Theorem 2.13 is adapted from the arguments of Achlioptas.
Random projections have been used successfully in a variety of applications, for example,
Linial, London, andRabinovich (1995), Kleinberg (1997), and Indyk andMotwani (1998).
For a survey we refer the reader to the book of Vempala (2004).

Theorem 2.14 is attributed to Chebyshev (see, e.g. Hall, Littlewood and Pólya (1952)).
We note here that association properties may often be used to derive concentration prop-
erties. We refer the reader to the survey of Dubhashi and Ranjan (1998). Theorem 2.15 is
due to Harris (1960), though sometimes it is referred to as the FKG inequality because of a
generalization established by Fortuin, Kasteleyn, and Ginibre (1971).

The proof of the generalized Minkowski inequality (Theorem 2.16) presented here was
first found by F. Riesz (see Steele (2004), Zygmund (1959)).
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2.13 EX ERC I S E S

2.1. Let MZ be a median of the square-integrable random variable Z (i.e.
P {Z ≥ MZ} ≥ 1/2 and P {Z ≤ MZ} ≥ 1/2). Show that

|MZ – EZ| ≤
√
Var (Z).

2.2. LetX be a random variable withmedianMX such that positive constants a and b exist
so that for all t > 0,

P
{
|X –MX| > t

} ≤ ae–t
2/b.

Show that |MX – EX| ≤ min
(√

ab, a
√
bπ/2

)
.

2.3. (CHEBYSHEV–CANTELLI INEQUALITY) Prove the following one-sided improve-
ment of Chebyshev’s inequality: for any real-valued random variable Y and t > 0,

P{Y – EY ≥ t} ≤ Var (Y)
Var (Y) + t2

.
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2.4. (PALEY–ZYGMUND INEQUALITY) Show that if Y is a nonnegative random variable,
then for any a ∈ (0, 1),

P{Y ≥ aEY} ≥ (1 – a)2
(EY)2

E[Y2]
.

2.5. (MOMENTS VS. CHERNOFF BOUNDS) Show that moment bounds for tail prob-
abilities are always better than Cramér–Chernoff bounds. More precisely, let Y be
a nonnegative random variable and let t > 0. The best moment bound for the tail
probability P{Y ≥ t} is minq E[Yq]t–q where the minimum is taken over all positive
integers. The best Cramér–Chernoff bound is infλ>0 Eeλ(Y–t). Prove that

min
q

E[Yq]t–q ≤ inf
λ>0

Eeλ(Y–t).

(See Philips and Nelson (1995).)
2.6. Let Z be a real-valued random variable. Show that the set of positive numbers

S =
{
λ > 0 : EeλZ < ∞}

is either empty, or an interval with left end point equal
to 0. Let b = sup S. Show that ψZ(λ) = logEeλZ is convex and infinitely many
times differentiable on I = (0, b). Show that if EZ = 0, ψZ is continuously differ-
entiable on [0, b) with ψ ′

Z(0) = ψZ(0) = 0 and the Cramér transform of Z equals
ψ∗

Z(t) = supλ∈I (λt – ψZ(λ)).
2.7. Prove that if Z is a centered normal random variable with variance σ 2 then

sup
t>0

(
P {Z ≥ t} exp

(
t2

2σ 2

))
=
1
2
.

2.8. (ELEMENTARY INEQUALITIES) Prove the following inequalities appearing in the
text:

– log(1 – u) – u ≤ u2

2(1 – u)
for u ∈ (0, 1);

h(u) = (1 + u) log(1 + u) – u ≥ u2

2(1 + u/3)
for u > 0;

h1(u) = 1 + u –
√
1 + 2u ≥ u2

2(1 + u)
, for u > 0.

2.9. (SUB-GAUSSIAN LOWER TAIL FOR NONNEGATIVE RANDOM VARIABLES) Let X
be a nonnegative random variable with finite second moment. Show that for any
λ > 0, Ee–λ(X–EX) ≤ eλ2E[X2]/2. In particular, if X1, . . . ,Xn are independent nonneg-
ative random variables, then for any t > 0,

P {S ≤ –t} ≤ exp
(
–t2

2v

)
where S =

∑n
i=1(Xi – EXi) and v =

∑n
i=1 E

[
X2
i
]
.
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2.10. Let X1, . . . ,Xn be independent Bernoulli random variables with parameters
p1, . . . , pn, respectively. Let p = (1/n)

∑n
i=1 pi and Sn =

∑n
i=1 Xi. Prove that

P{Sn – np ≥ nε} ≤ e–npε
2/3 and P{Sn – np ≤ –nε} ≤ e–npε

2/2

(Angluin and Valiant (1979), see also Hagerup and Rüb (1990)).
2.11. Let B be binomially distributed with parameters (n, p). Show that for p ≤ a < 1,

P{B > an} ≤
((p

a

)a (1 – p
1 – a

)1–a
)n

≤
((p

a

)a
ea–p

)n
.

Show that for 0 < a < p, the same upper bounds hold for P{B ≤ an} (Karp (1988),
see also Hagerup and Rüb (1990)).

2.12. Let B be binomially distributed with parameters (n, p). Show that if p ≥ 1/2,

P{B – np ≥ nε} < e–
nε2

2p(1–p) ,

and if p ≤ 1/2,

P{B – np ≤ –nε} < e–
nε2

2p(1–p)

(Okamoto (1958)).
2.13. Let B be binomially distributed with parameters (n, p). Prove that

P
{√

B –
√
np ≥ ε

√
n
}

< e–2nε
2
,

and

P
{√

B –
√
np ≤ –ε

√
n
}

< e–nε
2

(Okamoto (1958)).
2.14. LetD and n be positive integers with 1 ≤ D ≤ n. Show that

D∑
j=0

(
n
j

)
≤
( en
D

)D
.

Hint: observe that the left-hand side is 2n times a tail probability of a symmetric
binomial random variable and use Chernoff’s inequality.

2.15. (ALTERNATIVE PROOF OF BENNETT’S INEQUALITY) As in the proof of
Lemma 2.2, show that if Y is a centered random variable with finite variance v such
that Y ≤ 1,

ψY(λ) = logEeλY ≤ log
(
1 + v

(
eλ – λ – 1

))
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for λ ∈ R by solving a differential inequality.Hint: let P denote the distribution of Y
and let Pλ be the probability distributionwith density e–ψY (λ)eλx with respect to P. Let
Z have distribution Pλ. Check first that Var (Z) ≤ veλ.

2.16. Prove that if X is a sub-Gaussian random variable with variance factor v then
Var (X) ≤ v.

2.17. LetG1, . . . ,GN be independent standard normal random variables. Then

lim
N→∞

Emax i=1,...,N Gi√
2 logN

= 1.

(See Galambos (1987).)
2.18. (MAXIMUM OF INDEPENDENT POISSON RANDOM VARIABLES) LetX1, . . . ,Xn be

independent Poisson random variables with expectation 1. The LambertW function
is defined over [–1/e,∞) by the equationW(x)eW(x) = x. Prove that

E max
i=1,...,n

Xi ≤ log(n/e)
W(log(n/e)/e)

Prove that for z ≥ e,W(z) ≥ log(z) – log log(z) and that for n ≥ e3,

E max
i=1,...,n

Xi ≤ log(n/e)
log(log(n/e)/e) – log(log(log(n/e)/e))

.

The following upper bound may be more manageable:

E max
i=1,...,n

Xi ≤ 2 log n
log(log(en))

.

Hint: use Theorem 2.4.
2.19. (MAXIMUM OF INDEPENDENT BINOMIAL RANDOM VARIABLES) Let X1, . . . ,Xn

be independent Binomial (m, p) random variables. Prove that

E max
i=1,...,n

Xi ≤ mpe1+W((log(n)–mp)/(emp)),

whereW is defined in Exercise 2.18.
2.20. (RANDOM ALLOCATIONS) Suppose we throw m balls into n bins uniformly inde-

pendently at random. Let M be the maximum number of balls in any bin. Prove
that

EM ≤ m
n
e1+W((log(n)–m/n)/(em/n)).

Deduce from this that ifm = cn log(n) for c > 0,

EM ≤ c log(n)e1+W((1–c)/(ce)).
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Conclude that ifm = cn for c > 0, if log n > c,

EM ≤ log(n) – c
log((log(n) – c)/(ec)) – log(log((log(n) – c)/(ec)))

.

Hint: use Theorem 2.4 and Exercises 2.18 and 2.19. See Raab and Steger (1998) for
related results and asymptotics.

2.21. (SUB-GAMMA RANDOM VARIABLES: ONE-SIDED BOUNDS) Let X be a centered
random variable (i.e. EX = 0) in �+(v, c). Show that Var (X) ≤ v and there
exists a constant C such that for every integer q ≥ 2,

(
E
[
Xq
+
])1/q ≤ C

(√qv + cq
)
.

Conversely, suppose that X is a centered random variable such that there exist con-
stants A and B such that Var (X) ≤ A and

(
E
[
Xq
+
])1/q ≤ √

qA + Bq for all q ≥ 2.
Show that there exists a constant C such that X is in�+(v, c) with v = C(A + B2) and
c = CB.

2.22. (SUB-EXPONENTIAL RANDOM VARIABLES) A nonnegative random variable X has
exponential distribution with parameter a > 0 if X has a density ae–ax, x ≥ 0. The
moment-generating function of X is then EeλX = 1/(1 – λ/a) for λ ∈ (0, a). Show
that if q is a positive integer, the q-th moment ofX equals E[Xq] = q!/aq. We say that
a nonnegative random variable X has a sub-exponential distribution if there exists a
constant a > 0 such that for all 0 < λ < a, EeλX ≤ 1/(1 – λ/a). Show that if X is
sub-exponential, then for every positive integer q,

E[Xq] ≤ 2q+1
q!
aq
.

2.23. (SUB-EXPONENTIAL DISTRIBUTION–CONTINUED) Let X be a random variable
such that there exists a constant a > 0 in order that for every positive integer q,

E[Xq] ≤ q!
aq
.

Show thatX is sub-exponential.More precisely, show that for any 0 < λ < a,EeλX ≤
1/(1 – λ/a).

2.24. (A TAIL-COMPARISON INEQUALITY) Let X and Y be two real-valued random
variables such that for any real a,

E
[
(X – a)+

] ≤ E
[
(Y – a)+

]
while for some κ ≥ 1 and b > 0, for all t ≥ 0,

P{Y ≥ t} ≤ κe–bt .

Prove that for all t ≥ 0,

P{X ≥ t} ≤ κ e1–bt

(see Panchenko (2003)).
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2.25. Consider theGaussian chaos of order twoZ defined in Example 2.12. Show that there
exist positive constants c and C such that for all q ≥ 2 and n ≥ 1,

c
(√

q‖A‖HS + q‖A‖) ≤ (
E
[
|Z|q

])1/q ≤ C
(√

q‖A‖HS + q‖A‖)
(see Latała (1999)).

2.26. Let f be a nonnegative nonincreasing and g a nondecreasing real-valued
function. Let h be a nonnegative function with finite expectation, such that
E[h(X)f (X)] ≤ E[h(X)]. Then

E
[
f (X)g(X)h(X)

] ≤ E
[
h(X)g(X)

]
.

2.27. (BETWEEN SUB-GAMMA AND GAUSSIAN) Let X1, . . . ,Xn be identically distributed
independent random variables such that

P
{
|Xi| ≥ u

} ≤ e–u
p

for some p ≥ 1. Let q = p/(p – 1) be the conjugate of p. Let s = (s1 . . . , sn) ∈ Rn. Let
Z =

∑n
i=1 siXi. Prove that there exists a constant L (that depends on p but not on n)

such that

P {Z ≥ t} ≤ L exp
(
–
1
L
min

(
t2

‖s‖22
,
tp

‖s‖pq
))

where ‖s‖pp =∑n
i=1 |si|

p (if p < ∞) or max
(
|si|
)
(if p = ∞).

2.28. (MOMENTS OF THE GUMBEL DISTRIBUTION) Let X be distributed accord-
ing to the Gumbel distribution: P{X ≤ t} = exp(– exp(–t)). Prove that EX
equals the Euler–Mascheroni constant (limn→∞

∑n
i=1 1/i – log n), that Var (X) =

π 2/6 = limn→∞
∑n

i=1 1/i
2, and that for all λ ≥ 0, logE exp(λ(X – EX)) ≤

Var (X)λ2/(2(1 – λ)).Hint: use Rényi’s representation of order statistics of samples
of the exponential distribution, described as follows: if Y1, . . . , Yn are independent
exponentially distributed random varibles, then max(X1, . . . ,Xn) is distributed as∑n

i=1 Yi/i, and max(Y1, . . . , Yn) – log n converges in distribution to the Gumbel
distribution.



3

Bounding the Variance

The purpose of this chapter is to introduce a simple, yet powerful, inequality which offers
a useful upper bound for the variance of a general function of several independent random
variables.

Formally, let f : X n → R be a real-valued function of n variables, whereX is somemeas-
urable space. If X1, . . . ,Xn are independent random variables taking values in X , then we
may define the real-valued random variable

Z = f (X1, . . . ,Xn).

We emphasize that the Xi may have different distributions, the only essential assumption
is independence. Throughout this chapter we assume that Z has a finite variance, and our
purpose is to find general upper bounds.

The basic result – the Efron–Stein inequality–, presented in Section 3.1, provides a
bound in terms of “local” variations of the function f . This inequality is a prologue to
the numerous results presented in this book in which concentration properties may be
controlled by studying the local behavior of the function at hand.

A large part of this chapter (Sections 3.2–3.5) is devoted to applications of the Efron–
Stein inequality for bounding the variance of complex functions of independent random
variables. We hope that the elementary arguments will convince the reader of the versatility
and power of this simple inequality.

Once the variance ofZ is controlled, onemay use Chebyshev’s inequality to derive upper
bounds for the tail probabilities P{Z > EZ + t}. However, interestingly, by a simple trick
shown in Section 3.6, the Efron–Stein inequality may also be used to derive exponential
bounds for the tail probability. These bounds are not optimal in the sense that they do not
capture the right exponential rate of decrease of the tails. In subsequent chapters we show
how these tail inequalities can be significantly sharpened to prove tail bounds which cannot
be revealed by looking at the variance only. However, the techniques used in this chapter
present many of the main ideas used later in a simple, digestible form.
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In Section 3.7 we show how the Efron–Stein inequality implies the Gaussian Poincaré
inequality, a classical result for smooth functions of independent normal random variables.

We close this chapter by providing an alternative proof of the Efron–Stein inequal-
ity, based on a duality argument, which opens the door to generalizations presented in
subsequent chapters, notably in Section 4.9.

3.1 The Efron–Stein Inequality

One of the main messages of this book is that, in a certain sense, sums of independent
random variables have an extremal place in the world of general functions of independ-
ent random variables. Before deriving a bound for the variance of a general function Z of
independent random variables (this problem, of course, only makes sense when Z is square
integrable), we can gain some insight by considering first the very special case when the
variablesX1, . . . ,Xn are real-valued and Z = X1 + · · · + Xn. In this case we can use the exact
formula

Var (Z) =
n∑
i=1

Var (Xi).

Of course, the proof of this formula uses independence only through the pairwise ortho-
gonality (in L2) of the variables Xi – EXi. Now it is a natural idea to bound the variance
of a general function by expressing Z – EZ as a sum of martingale differences for the Doob
filtration and use the orthogonality of these differences. More precisely, if we denote by Ei
the conditional expectation operator, conditioned on (X1, . . . ,Xi), and use the convention
E0 = E, then we may define

�i = EiZ – Ei–1Z

for every i = 1, . . . , n. Starting from the decomposition

Z – EZ =
n∑
i=1

�i

one has

Var (Z) = E

[(
n∑
i=1

�i

)2]
=

n∑
i=1

E
[
�2

i
]
+ 2

∑
j>i

E
[
�i�j

]
.

Now, if j > i, Ei�j = 0 implies that

Ei
[
�j�i

]
= �iEi�j = 0,

and, a fortiori, E
[
�j�i

]
= 0. Thus, we obtain the following analog of the additivity formula

of the variance:
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Var (Z) = E

[(
n∑
i=1

�i

)2]
=

n∑
i=1

E
[
�2

i
]
.

Until now, we have made no use of the fact that Z is a function of independent variables
X1, . . . ,Xn. Indeed, the above formula holds for any martingale. Independence may be
applied in the following argument: for any integrable function Z = f (X1, . . . ,Xn) one may
write, by Fubini’s theorem,

EiZ =
∫
X n–i

f (X1, . . . ,Xi, xi+1, . . . , xn) dμi+1 (xi+1) . . . dμn (xn),

where, for every j = 1, . . . , n, μj denotes the probability distribution of Xj.
Also, if we denote by E(i) the conditional expectation operator conditioned on
X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn), we have

E(i)Z =
∫
X
f (X1, . . . ,Xi–1, xi,Xi+1, . . . ,Xn) dμi (xi).

Then, again by Fubini’s theorem,

Ei

[
E(i)Z

]
= Ei–1Z. (3.1)

This observation is key in the proof of the main result of this chapter which we state next.

Theorem 3.1 (EFRON–STEIN INEQUALITY) Let X1, . . . ,Xn be independent random vari-
ables and let Z = f (X) be a square-integrable function of X = (X1, . . . ,Xn). Then

Var (Z) ≤
n∑
i=1

E
[(

Z – E(i)Z
)2] def= v.

Moreover, if X′
1, . . . ,X

′
n are independent copies of X1, . . . ,Xn and if we define, for every

i = 1, . . . , n,

Z′
i = f (X1, . . . ,Xi–1,X′

i ,Xi+1, . . . ,Xn),

then

v =
1
2

n∑
i=1

E
[
(Z – Z′

i)
2
]
=

n∑
i=1

E
[
(Z – Z′

i)
2
+

]
=

n∑
i=1

E
[
(Z – Z′

i)
2
–

]
where x+ = max(x, 0) and x– = max(–x, 0) denote the positive and negative parts of a real
number x. Also,

v = inf
Zi

n∑
i=1

E
[
(Z – Zi)2

]
,

where the infimum is taken over the class of all X(i)-measurable and square-integrable
variables Zi, i = 1, . . . , n.
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Proof We begin with the proof of the first statement. Note that, using (3.1), we may write

�i = Ei

[
Z – E(i)Z

]
.

By Jensen’s inequality, used conditionally,

�2
i ≤ Ei

[(
Z – E(i)Z

)2]
.

Using Var (Z) =
∑n

i=1 E
[
�2

i
]
, we obtain the desired inequality. To prove the identit-

ies for v, denote by Var (i) the conditional variance operator conditioned on X(i). Then
we may write v as

v =
n∑
i=1

E
[
Var(i) (Z)

]
.

Now note that one may simply use (conditionally) the elementary fact that if X
and Y are independent and identically distributed real-valued random variables, then
Var (X) = (1/2)E[(X – Y)2]. Since conditionally on X(i), Z′

i is an independent copy
of Z, we may write

Var(i) (Z) =
1
2
E(i)

[
(Z – Z′

i)
2
]
= E(i)

[
(Z – Z′

i)
2
+

]
= E(i)

[
(Z – Z′

i)
2
–

]
where we used the fact that the conditional distributions of Z and Z′

i are identical.
The last identity is obtained by recalling that, for any real-valued random variable
X, Var (X) = infa∈R E[(X – a)2]. Using this fact conditionally, we have, for every
i = 1, . . . , n,

Var(i) (Z) = inf
Zi
E(i) [(Z – Zi)

2].
Note that this infimum is achieved whenever Zi = E(i)Z. �

Observe that in the case when Z =
∑n

i=1 Xi is a sum of independent random variables
(with finite variance), then the Efron–Stein inequality becomes an equality. Thus, the
bound in the Efron–Stein inequality is, in a sense, not improvable.

Remark 3.2 (THE JACKKNIFE ESTIMATE) We should note here that the Efron–Stein
inequality was first motivated by the study of the so-called jackknife estimate of stat-
istics. To describe this estimate, assume that X1, . . . ,Xn are i.i.d. random variables
and one wishes to estimate a functional θ of the distribution of the Xi by a function
Z = f (X1, . . . ,Xn) of the data. The quality of the estimate is often measured by its
bias EZ – θ and its variance Var (Z). Since the distribution of the Xi’s is unknown, one
needs to estimate the bias and variance from the same sample. The jackknife estimate
of the bias is defined by
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(n – 1)

(
1
n

n∑
i=1

Zi – Z

)

where Zi is an appropriately defined function of X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn)
(see Exercise 3.4). X(i) is often called the i-th jackknife sample while Zi is the so-called
jackknife replication of Z. In an analogous way, the jackknife estimate of the variance is
defined by

n∑
i=1

(Z – Zi)2.

(Sometimes this sum is multiplied by (n – 1)/n.) Using this language, the Efron–Stein
inequality simply states that the jackknife estimate of the variance is always positively
biased. In fact, this is how Efron and Stein originally formulated their inequality.

In the next sections we illustrate the use of the Efron–Stein inequality for various pro-
totypical examples. For many of these examples we will be able to prove much stronger
exponential tail estimates. However, the bases of the methodology are laid down here and
the arguments presented in this chapter will be of great use in establishing sharper bounds.
Also, useful bounds for the variance can often be derived under significantly more general
conditions than sharper tail bounds.

3.2 Functions with Bounded Differences

We say that a function f : X n → R has the bounded differences property if for some
nonnegative constants c1, . . . , cn,

sup
x1,..., xn ,
x′i∈X

| f (x1, . . . , xn) – f (x1, . . . , xi–1, x′i , xi+1, . . . , xn)| ≤ ci, 1 ≤ i ≤ n.

In other words, if we change the i-th variable of f while keeping all the others fixed, the value
of the function cannot change by more than ci. Then the Efron–Stein inequality implies the
following:

Corollary 3.2 If f has the bounded differences property with constants c1, . . . , cn, then

Var (Z) ≤ 1
4

n∑
i=1

c2i .

Proof From the Efron–Stein inequality,

Var (Z) ≤ inf
Zi

n∑
i=1

E
[
(Z – Zi)2

]
,
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where the infimum is taken over the class of all X(i)-measurable and square-integrable
variables Zi. Here we choose

Zi =
1
2

(
sup
x′i∈X

f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn)

+ inf
x′i∈X

f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn)
)
.

Hence

(Z – Zi)2 ≤ c2i
4
,

and the proposition follows. �

Next we list some interesting applications of this corollary. In all cases the bound for
the variance is obtained effortlessly, while a direct estimation of the variance may be quite
involved.

Example 3.3 (BIN PACKING)This is one of the basic operations research problems. Given
n numbers x1, . . . , xn ∈ [0, 1], the question is the following: what is the minimal num-
ber of “bins” intowhich these numbers can be packed such that the sumof the numbers
in each bin does not exceed one. Let f (x1, . . . , xn) be this minimum number. Clearly,
changing one of the xi’s, the value of f (x1, . . . , xn) cannot change bymore than one, so
whenever X1, . . . ,Xn are independent, Z = f (X1, . . . ,Xn) satisfies

Var (Z) ≤ n
4
.

This upper bound is not improvable because if the Xi are symmetric Bernoulli ran-
dom variables (i.e. P{Xi = 0} = P{Xi = 1} = 1/2), then Z is binomially distributed
with parameters n and 1/2 and therefore Var (Z) = n/4. On the other hand, sharper
bounds, which depend on the distribution of the Xi, may be proved using Talagrand’s
convex distance inequality discussed in Chapter 7.

Example 3.4 (LONGEST COMMON SUB-SEQUENCE) The simplest version of the longest
common sub-sequence problem is as follows: let X1, . . . ,Xn and Y1, . . . , Yn be two
sequences of coin flips. Define Z as the length of the longest sub-sequence which
appears in both sequences, that is,

Z = max{k : Xi1 = Yj1 , . . . ,Xik = Yjk ,
where 1 ≤ i1 < · · · < ik ≤ n and 1 ≤ j1 < · · · < jk ≤ n}.

The behavior of EZ has been investigated in many papers. It is known that EZ/n con-
verges to some number γ , whose value is unknown. It is conjectured to be 2/(1 +

√
2),

and it is known to fall between 0.75796 and 0.83763. Here we are concerned with the
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concentration of Z. A moment of thought reveals that changing one bit cannot change
the length of the longest common subsequence by more than one, so Z satisfies the
bounded differences property with ci = 1. Consequently,

Var (Z) ≤ n
2
.

Thus, by Chebyshev’s inequality, with large probability, Z is within a constant times√
n of its expected value. In other words, it is strongly concentrated around the mean,

whichmeans that results onEZ faithfully describe the behavior of the longest common
subsequence of two random strings.

Example 3.5 (KERNEL DENSITY ESTIMATION) Let X1, . . . ,Xn be i.i.d. samples drawn
according to some (unknown) density φ on the real line. The density is estimated by
the kernel estimate

φn(x) =
1
nhn

n∑
i=1

K
(
x – Xi

hn

)
,

where hn > 0 is a smoothing parameter, andK is a nonnegative function with
∫
K = 1.

The performance of the estimate is typically measured by the L1 error

Z(n) = f (X1, . . . ,Xn) =
∫

|φ(x) – φn(x)|dx .

It is easy to see that

| f (x1, . . . , xn) – f (x1, . . . , x′i , . . . , xn)| ≤
1
nhn

∫ ∣∣∣∣K (x – xi
hn

)
– K

(
x – x′i
hn

)∣∣∣∣ dx
≤ 2

n
,

so without further work we obtain

Var (Z(n)) ≤ 1
n
.

It is known that for every φ,
√
nEZ(n) → ∞, which implies, by Chebyshev’s inequal-

ity, that for every ε > 0

P
{∣∣∣∣ Z(n)EZ(n)

– 1
∣∣∣∣ ≥ ε

}
= P

{∣∣Z(n) – EZ(n)∣∣ ≥ εEZ(n)
} ≤ Var (Z(n))

ε2(EZ(n))2
→ 0

as n → ∞. That is, Z(n)/EZ(n) → 1 in probability, or in other words, Z(n) is
relatively stable. This means that the random L1-error essentially behaves like its
expected value.

Example 3.6 (RADEMACHER AVERAGES) Rademacher averages and processes have
played an important role in a large variety of applications ranging from empirical pro-
cess theory through geometry to statistical learning theory. Here we derive bounds
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for the variance of the supremum of a Rademacher process, using the Efron–Stein
inequality.

To define Rademacher averages, let (αi,t) be a collection of real numbers indexed
by i = 1, . . . , n and t ∈ T where T is some set. If X1, . . . ,Xn are independent sym-
metric random signs (i.e. with P{Xi = –1} = P{Xi = 1} = 1/2), then one may define
Z = supt∈T

∑n
i=1 Xiαi,t . The Xi are often called Rademacher variables and Z is a

Rademacher average. The size of the expected value of Z depends, in a delicate manner,
on the αi,t . However, it is immediate to see that by changing one Xi, Z can change by
at most 2 supt∈T |αi,t|, so regardless of the behavior of EZ, by Corollary 3.2 we always
have

Var (Z) ≤
n∑
i=1

sup
t∈T

α2
i,t .

Next we show how a closer look at the Efron–Stein inequality implies a significantly
better bound for the variance ofZ. LetX′

1, . . . ,X
′
n be independent copies ofX1, . . . ,Xn.

Then

Z′
i = sup

t∈T

⎡⎣⎛⎝ n∑
j:j�=i

Xjαj,t

⎞⎠ + X′
iαi,t

⎤⎦.
Let t∗ be a (random) index such that supt∈T

∑n
j=1 Xjαj,t =

∑n
j=1 Xjαj,t∗ . Then, for

every i = 1, . . . , n,

Z – Z′
i ≤ (Xi – X′

i )αi,t∗

which implies

(Z – Z′
i)
2
+ ≤ (Xi – X′

i )
2
α2
i,t∗ .

By independence of X′
i and (X1, . . . ,Xn),

E
[
(Z – Z′

i)
2
+

]
≤ E

[
E
[(
(Xi – X′

i )
2)α2

i,t∗ |X1, . . . ,Xn
]]

= 2E
[
α2
i,t∗
]
.

Hence, the Efron–Stein inequality implies

Var (Z) ≤ 2E

[ n∑
i=1

α2
i,t∗

]
≤ 2σ 2,

where σ 2 = supt∈T
∑n

i=1 α2
i,t . Note that, while we lost a factor of 2, the supremum is

now outside of the sum and this bound may be a significant improvement on what we
obtained as an immediate corollary of the bounded differences property.
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3.3 Self-Bounding Functions

Another simple property which is satisfied for many important examples is the so-called
self-bounding property. We say that a nonnegative function f : X n → [0,∞) has the self-
bounding property if there exist functions fi : X n–1 → R such that for all x1, . . . , xn ∈ X
and all i = 1, . . . , n,

0 ≤ f (x1, . . . , xn) – fi(x1, . . . , xi–1, xi+1, . . . , xn) ≤ 1

and also

n∑
i=1

(f (x1, . . . , xn) – fi(x1, . . . , xi–1, xi+1, . . . , xn)) ≤ f (x1, . . . , xn).

For self-bounding functions we clearly have

n∑
i=1

(f (x1, . . . , xn) – fi(x1, . . . , xi–1, xi+1, . . . , xn))
2 ≤ f (x1, . . . , xn)

and therefore the last expression of v in Theorem 3.1 implies the following:

Corollary 3.7 If f has the self-bounding property, then

Var (Z) ≤ EZ.

Next we mention some applications of this simple corollary. In many cases the obtained
bound is a significant improvement over that which we would obtain using simply
Corollary 3.2.

Remark 3.3 (RELATIVE STABILITY) A sequence of nonnegative random variables
(Z(n))n∈N is said to be relatively stable if Z(n)/EZ(n) → 1 in probability. This prop-
erty guarantees that the random fluctuations of Z(n) around its expectation are of
negligible size when compared to the expectation, and therefore most information
about the size of Z(n) is given by EZ(n). Bounding the variance of Z(n) by its expec-
ted value implies, in many cases, the relative stability of (Z(n))n∈N. If Z(n) has the
self-bounding property, then, by Chebyshev’s inequality, for all ε > 0,

P
{∣∣∣∣ Z(n)EZ(n)

– 1
∣∣∣∣ > ε

}
≤ Var (Z(n))

ε2(EZ(n))2
≤ 1

ε2EZ(n)
.

Thus, for relative stability, it suffices to have EZ(n) → ∞.

An important class of functions satisfying the self-bounding property consists of the
so-called configuration functions.

Assume that we have a property � defined over the union of finite products of a
set X , that is, a sequence of sets �1 ⊂ X ,�2 ⊂ X × X , . . . ,�n ⊂ X n. We say that
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(x1, . . . xm) ∈ Xm satisfies the property� if (x1, . . . xm) ∈ �m.We assume that� is hered-
itary in the sense that if (x1, . . . xm) satisfies � then so does any sub-sequence (xi1 , . . . xik)
of (x1, . . . xm). The function f that maps any vector x = (x1, . . . xn) to the size of a largest
sub-sequence satisfying� is the configuration function associated with property�.

Corollary 3.7 implies the following result:

Corollary 3.8 Let f be a configuration function, and let Z = f (X1, . . . ,Xn), where X1, . . . ,Xn
are independent random variables. Then

Var (Z) ≤ EZ.

Proof By Corollary 3.7 it suffices to show that any configuration function is self-bounding.
Let Zi = f (X(i)) = f (X1, . . . ,Xi–1,Xi+1, . . . ,Xn). The condition 0 ≤ Z – Zi ≤ 1 is
trivially satisfied. On the other hand, assume that Z = k and let {Xi1 , . . . ,Xik} ⊂
{X1, . . . ,Xn} be a sub-sequence of cardinality k such that fk(Xi1 , . . . ,Xik) = k. (Note
that by the definition of a configuration function such a sub-sequence exists.) Clearly,
if the index i is such that i /∈ {i1, . . . , ik} then Z = Zi, and therefore

n∑
i=1

(Z – Zi) ≤ Z

is also satisfied, which concludes the proof. �

To illustrate the fact that configuration functions appear rather naturally in various
applications, we describe some examples originating from different fields.

Example 3.9 (NUMBER OF DISTINCT VALUES IN A DISCRETE SAMPLE) Let X1, . . . ,Xn
be independent, identically distributed random variables taking their values in the
set of positive integers such that P{X1 = k} = pk, and let Z(n) denote the number of
distinct values taken by these n random variables. Then we may write

Z(n) =
n∑
i=1

1{{Xi �=X1,...,Xi �=Xi–1}},

so the expected value of Z(n) may be computed easily:

EZ(n) =
n∑
i=1

∞∑
j=1

(1 – pj)i–1pj.

It is easy to see that E[Z(n)]/n → 0 as n → ∞ (see Exercise 3.8). But how concen-
trated is the distribution of Z(n)? Clearly, Z(n) satisfies the bounded differences prop-
erty with ci = 1, soCorollary 3.2 implies Var (Z(n)) ≤ n/4 and thereforeZ(n)/n → 0
in probability by Chebyshev’s inequality. On the other hand, it is obvious thatZ(n) is a
configuration function associated with the property of “distinctness,” and by Corollary
3.8 we have
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Var (Z(n)) ≤ EZ(n)

which is a significant improvement since EZ(n) = o(n).

Example 3.10 (VC DIMENSION)One of the central quantities in statistical learning theory
is theVapnik–Chervonenkis dimension. LetA be an arbitrary collection of subsets ofX ,
and let x = (x1, . . . , xn) be a vector of n points ofX . Define the trace ofA on x by

tr(x) = {A ∩ {x1, . . . , xn} : A ∈ A}.

The shatter coefficient, (or Vapnik–Chervonenkis growth function) of A in x is
T(x) = |tr(x)|, the size of the trace. T(x) is the number of different subsets of the
n-point set {x1, . . . , xn} generated by intersecting it with elements of A. A subset
{xi1 , . . . , xik} of {x1, . . . , xn} is said to be shattered if 2k = T(xi1 , . . . , xik). The VC
dimension D(x) of A (with respect to x) is the cardinality k of the largest shattered
subset of x. From the definition it is obvious that f (x) = D(x) is a configuration func-
tion (associated with the property of “shatteredness”) and therefore if X1, . . . ,Xn are
independent random variables, then

Var (D(X)) ≤ ED(X).

Example 3.11 (INCREASING SUB-SEQUENCES) Consider a vector x = (x1, . . . , xn) of n
distinct numbers in [0, 1]. The positive integers i1 < i2 < · · · < im form an increas-
ing sub-sequence if xi1 < xi2 < · · · < xim (where i1 ≥ 1 and im ≤ n). Let L(x) denote
the length of a longest increasing sub-sequence. Clearly, L(x) is a configuration func-
tion (associated with the “increasing sequence” property) and therefore, if X1, . . . ,Xn
are independent random variables such that they are different with probability
one (this is warranted if every Xi has an absolutely continuous distribution) then
Var (L(X)) ≤ EL(X). If the Xi’s are uniformly distributed in [0, 1] then it is known
that EL(X) ∼ 2

√
n. The obtained bound for the variance appears to be quite loose

and the right order is Var (L(X)) = O(n1/3), an apparently difficult result.
In a variation of the problem, X1, . . . ,Xn take their values in a finite set {1, . . . ,m}.

Here we define L(m)(X) to be the length of the longest increasing sub-sequence
of X = (X1, . . . ,Xn), that is, the largest positive integer k for which there exist
1 ≤ i1 < · · · < ik ≤ n such that Xi1 ≤ Xi2 ≤ . . . ≤ Xik . The analysis of the variance
remains unchanged, and as above, we have Var (L(m)(X)) ≤ EL(m)(X). This estimate
has the right order of magnitude as it is known that if the Xi are uniformly distrib-
uted, (L(m)(X) – n/m)/

√
2n/m converges in distribution to a random variable whose

distribution depends onm.

Example 3.12 (CONDITIONAL RADEMACHER AVERAGES) An example of a self-
bounding function which is not a configuration function is that of Rademacher
averages. Let X1, . . . ,Xn be independent random variables taking values in [–1, 1]d

and denote the components of Xi by Xi,1 . . . ,Xi,d, i = 1, . . . , n. If ε1, . . . , εn denote
independent symmetric {–1, 1}-valued random variables, independent of theXi’s (the
so-called Rademacher random variables), then we define the conditional Rademacher
average as
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Z = E

[
max
j=1,...,d

n∑
i=1

εiXi,j|X1, . . . ,Xn

]
.

(Thus, the expected value is taken with respect to the Rademacher variables and Z is
a function of the Xi’s.) Quantities like Z have been known to measure effectively the
complexity of model classes in statistical learning theory. It is immediate that Z has the
bounded differences property andCorollary 3.2 implies Var (Z) ≤ n/4. However, this
bound may be improved by observing that Z also has the self-bounding property, and
therefore Var (Z) ≤ EZ. Indeed, defining

Zi = E

⎡⎢⎢⎣ max
j=1,...,d

n∑
k=1
k�=i

εiXk,j|X(i)

⎤⎥⎥⎦
it is easy to see that 0 ≤ Z – Zi ≤ 1 and

∑n
i=1(Z – Zi) ≤ Z (the details are left as an

exercise). The improvement provided by Lemma 3.7 is essential since it is well known
in empirical process theory and statistical learning theory that in many circumstances,
EZmay be bounded byCn1/2 where the constantC that does not depend on n (see for
example Section 13.3).

3.4 More Examples and Applications

Example 3.13 (FIRST PASSAGE PERCOLATION)Consider a graph such that a weightXi is
assigned to each edge ei so that the Xi are nonnegative independent random variables
with second moment EX2

i = σ 2. Let v1 and v2 be fixed vertices of the graph. We are
interested in the total weight of the path from v1 to v2 with minimum weight. (The
weight of a path is defined as the sum of the weights of the edges on the path.) Thus,

Z = min
P

∑
ei∈P

Xi

where theminimum is taken over all paths P from v1 to v2. Denote an arbitrary optimal
path by P∗. By replacing Xi with X′

i , the total minimum weight can only increase if the
edge ei is on P∗, and therefore

(Z – Z′
i)
2
– ≤ (X′

i – Xi)2+1{ei∈P∗} ≤ X′
i
2
1{ei∈P∗}.

Thus,

Var (Z) ≤ E
∑
i

X′
i
2
1{ei∈P∗} = σ 2E

∑
i

1{ei∈P∗},

that is, the variance of Z is bounded by σ 2 times the expected number of edges in the
minimum-weight path. Under general conditions, this is bounded by a constant times
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the graph distance between v1 and v2 (see the exercises). This linear bound, however,
is known to be loose in some important special cases such as percolation on Zd. To
prove bounds of the correct order for this special case remains to be a challenge.

Example 3.14 (THE LARGEST EIGENVALUE OF A RANDOM SYMMETRIC MATRIX) Let
A be a symmetric realmatrix whose entriesXi,j, 1 ≤ i ≤ j ≤ n are independent random
variables with absolute value bounded by 1. LetZ = λ1 denote the largest eigenvalue of
A. The property of the largest eigenvalue we need in order to bound the variance ofZ is
that if v = (v1, . . . , vn) ∈ Rn is an eigenvector corresponding to the largest eigenvalue
λ1 with ‖v‖ = 1, then

λ1 = vTAv = sup
u:‖u‖=1

uTAu.

Using Theorem 3.1, consider the symmetric matrix A′
i,j obtained by replacing Xi,j in A

by the independent copy X′
i,j, while keeping all other variables fixed. Let Z

′
i,j denote the

largest eigenvalue of the obtained matrix. Then by the above-mentioned property of
the largest eigenvalue,

(Z – Z′
i,j)+ ≤

(
vTAv – vTA′

i,jv
)
1{Z>Z′

i,j}

=
(
vT(A – A′

i,j)v
)
1{Z>Z′

i,j} ≤ 2(vivj(Xi,j – X′
i,j))+

≤ 4|vivj|.

Therefore,

∑
1≤i≤j≤n

(Z – Z′
i,j)

2
+ ≤

∑
1≤i≤j≤n

16|vivj|2 ≤ 16

( n∑
i=1

v2i

)2

= 16.

Taking expectations of both sides and using the Efron–Stein inequality, we have
Var (Z) ≤ 16. Thus, the variance is bounded by a constant regardless of the size of the
matrix and the distribution of the entries. The only condition we need is independence
and boundedness of the entries; they don’t even need to have the same distribution.
Note that the same proof also works for the smallest eigenvalue.

Example 3.15 (MINIMUM WEIGHT SPANNING TREE) Consider the random variable Tm
defined as the sum of weights on the minimum spanning tree of the complete graph
Km with independent uniformly distributed (on [0, 1]) weights Xi,j (1 ≤ i < j ≤ m)
on the edges. (Thus, Tm is a function of n =

(m
2

)
independent random variables.) It is

well known that the expected value of Tm converges to a constant ζ (3) =
∑∞

i=1 i
–3.

Here we bound the variance of Tm. Using the Efron–Stein inequality directly gives
a loose bound, but a simple trick will lead us close to the truth. The idea is that the
largest weight of any edge in the minimum spanning tree is small, at most of the
order logm/m, with high probability. This observation allows us to replace Tm with
the related random variable Tm obtained when the Xi,j are replaced by min(Xi,j, δm),
where δm > 0 is a small positive number. Note that if δm = c logm/m for some
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c > 1 then Tm = Tm with high probability. In order to appreciate this simply observe
that Tm �= Tm implies that the largest edge weight in the minimum spanning tree
is greater than δm. However, this is just the probability that the Erdős–Rényi ran-
dom graph G(m, δm) (i.e. a graph on m vertices in which each of the possible

(m
2

)
edges is present independently with probability δm) is not connected, which is at most
2
(
em(1–c)/2

– 1
)
+ 2m+1m–(c–1)m/4 (see Exercise 3.12) which is bounded by 4m–c/4, if

c ≥ 2. Since

Var (Tm) = E
[
T2
m
]
– (ETm)2

= E
[
T2
m1{Tm=Tm}

]
+ E

[
T2
m1{Tm �=Tm}

]
– (ETm)2

≤ Var (Tm) + m2P
{
Tm �= Tm

}
≤ Var (Tm) + 4m2–c/4,

it suffices to bound the variance of Tm. Here it is advantageous to use the variant of the
Efron–Stein inequality which states

Var (Tm) ≤ E
n∑

i,j=1
i�=j

(
Tm – T′

m,(i,j)

)2
–

where T′
m,(i,j) is obtained by replacing Xi,j by an independent copy. Clearly, if one

replaces the weight Xi,j then Tm can only decrease if the edge (i, j) is in the minimum
weight spanning tree. Since there arem – 1 such edges and the change cannot be more
than δm,

n∑
i,j=1
i�=j

(
Tm – T′

m,(i,j)

)2
–
≤ mδ2m.

In summary,

Var (Tm) ≤ mδ2m + 4m2–c/4 =
144 log2 m

m
+

4
m

where we choose c = 12. This bound is not quite of the correct order, since it is known
that, asymptotically, Var (Tm) ∼ (6ζ (4) – 4ζ (3))/m. (In fact,

√
m(Tm – ζ (3))

converges, in distribution, to a centered normal random variable with variance
6ζ (4) – 4ζ (3).) However, this argument illustrates how the Efron–Stein inequality
can be used in a simple way to obtain powerful nonasymptotic inequalities.

Example 3.16 (PACKET ROUTING IN PARALLEL COMPUTATION) Here we describe a
simple routing problem for massive parallel computation. Let N be an integer and
suppose that 2N processors are arranged in a binary hypercube. More precisely, con-
sider the graph with vertex set {–1, 1}N in which two vertices are joined by an edge
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if and only if the corresponding binary N-vectors differ in exactly one bit. Each vertex
represents a processor and processorswith neighboring vertices are joinedwith a direct
communication link. During the execution of a parallel computing task, processors
need to communicate with each other. In the simple model considered here, at a cer-
tain point in time, every processor u ∈ {–1, 1}N needs to send a packet to another
processor v = σ (u) where σ is a permutation over {–1, 1}N . Thus, for each vertex u,
a path from u to v = σ (u) has to be found on the graph, and the packet is sent from u
to v along the chosen path. In total, 2N paths are chosen (one for each vertex), some
of which may intersect in certain edges of the graph. If some edge is contained in vari-
ous paths, then congestion occurs and computation suffers a delay proportional to the
number of paths going through the edge. Thus, the routing problem is to assign paths
so that the maximum number of paths going through any single edge is as small as pos-
sible. Formally, a routing strategy is a mapping p from pairs of vertices to paths. The
length of a path is the number of edges it goes through.

The simplest routing strategy one may think of is the following “shortest-path”
strategy: for a given pair (u, v) of vertices with Hamming distance ρ = d(u, v) (with
v = σ (u)), choose the path u0 = u, u1, . . . , uρ = v defined recursively for i = 1, . . . , ρ
such that ui+1 differs from ui according to the ith position in which u and v differ. It
is easy to see (Exercise 3.14) that this strategy may have a maximal congestion that
is exponentially large in N. Now consider the following randomized solution. Given
a routing task σ , every vertex u chooses an intermediate vertexW(u) independently,
uniformly at random, among all possible 2N vertices. Then u is first routed toW(u) and
thenW(u) to σ (u) using the shortest path strategy described above. One may show
that the expected value of themaximal congestion of this scheme isO(N) (see Exercise
3.15).On the other hand, the randomvariableZ(σ ) defined as themaximal congestion
of any edge, may be considered as a function of the 2N independent random vari-
ablesW(u). Now it is easy to see that Z(σ ) is a configuration function and therefore
Var (Z(σ )) ≤ EZ(σ ) = O(N). Thus, with high probability, Z(σ ) remains bounded
by a linear function of N, an exponential improvement compared to the worst-case
performance of a deterministic routing strategy.

3.5 A Convex Poincaré Inequality

In Section 3.7 below we will use the Efron–Stein inequality to prove a classical state-
ment that any Lipschitz function of a canonical Gaussian vector has a standard deviation
bounded by the Lipschitz constant. Here we point out an analogous bound for functions of
n independent random variables taking values in [0, 1]n. The price we have to pay for this
generality is an extra convexity condition on the function.

We assume that f : [0, 1]n → R is a separately convex function, that is, for any
i = 1, . . . , n and fixed x1, . . . , xi–1, xi+1, . . . , xn, f is a convex function of its i-th variable. We
also assume that the partial derivatives of f exist, though this last conditionmay be removed
by a routine approximation argument which we do not detail here.
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Theorem 3.17 Let X1, . . . ,Xn be independent random variables taking values in the interval
[0, 1] and let f : [0, 1]n → R be a separately convex function whose partial derivatives
exist. Then f (X) = f (X1, . . . ,Xn) satisfies

Var (f (X)) ≤ E
[‖∇f (X)‖2].

Proof The proof is an easy consequence of the Efron–Stein inequality, because by
Theorem 3.1 it suffices to bound the random variable

∑n
i=1(Z – Zi)2 where

Zi = infx′i f (X1, . . . , x′i , . . . ,Xn). Denote by X′
i the value of x

′
i for which the minimum

is achieved. This is guaranteed by continuity and the compactness of the domain of f .
Then, writing X(i) = (X1, . . . ,Xi–1,X′

i ,Xi+1, . . . ,Xn), we have

n∑
i=1

(Z – Zi)2 =
n∑
i=1

(
f (X) – f

(
X(i)

)2)

≤
n∑
i=1

(
∂ f
∂xi

(X)
)2

(Xi – X′
i)
2

(by separate convexity)

≤
n∑
i=1

(
∂ f
∂xi

(X)
)2

= ‖∇f (X)‖2. �

Example 3.18 (THE LARGEST SINGULAR VALUE OF A RANDOM MATRIX) Let A be
an m × nmatrix with entries Xi,j (i = 1, . . . ,m, j = 1, . . . , n) of independent random
variables taking values in [0, 1]. We are interested in concentration of the largest sin-
gular value Z ofA, defined as the square root of the largest eigenvalue of the symmetric
n× nmatrix ATA. Thus,

Z =
√

λ1(ATA) =
√

sup
u∈Rn:‖u‖=1

uTATAu = sup
u∈Rn:‖u‖=1

‖Au‖.

For each fixed vector u,‖Au‖ is a convex function of themn-dimensional vector formed
by theXi,j and since the supremumof convex functions is convex, we see thatZ is a con-
vex function of theXi,j. In order to applyTheorem3.17, wemay use Lidskii’s inequality,
a classical result of linear algebra, which states that ifA = (xi,j)m×n andB = (yi,j)m×n are
two matrices then, denoting by s1(M) ≥ · · · ≥ sn(M) the singular values of anm× n
matrixM,

(s1(A) – s1(B))
2 ≤

n∑
i=1

(si(A) – si(B))
2 ≤

n∑
i=1

si(A – B)2

= tr((A – B)T(A – B)) =
m∑
i=1

n∑
j=1

(xi,j – yi,j)2
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(see Exercise 3.16). Therefore, the largest singular value is a Lipschitz function with
Lipschitz constant L = 1 and by Theorem 3.17,

Var (Z) ≤ 1.

3.6 Exponential Tail Bounds via the Efron–Stein Inequality

The purpose of this section is to show two different ways by which the Efron–Stein inequal-
ity may be used in a simple and elementary way to prove exponential bounds for the tail
probabilities of functions with bounded differences. These bounds are suboptimal but the
main ideas will be used later to prove sharper bounds. Also, our intention is to provide
further evidence of the surprising power of the Efron–Stein inequality.

In the arguments, in fact, we need less than bounded differences, just the property that a
positive constant v exists such that

n∑
i=1

(Z – Z′
i)
2
+ ≤ v (3.4)

holds with probability one. Recall that, for example, the largest eigenvalue of a random
symmetric matrix satisfies this condition with v = 16 (see Example 3.14). We establish
exponential tail inequalities by deriving upper bounds for the distance between quantiles
of Z. Define, for any α ∈ (0, 1), the α-quantile of Z = f (X) = f (X1, . . . ,Xn) by

Qα = inf{z : P{Z ≤ z} ≥ α}.

In particular, we denote the median of Z byMZ = Q1/2.
The trick of the first method is to use the Efron–Stein inequality for the random variable

ga,b(X) = ga,b(X1, . . . ,Xn) where b ≥ a and the function ga,b : X n → R is defined as

ga,b(x) =

⎧⎨⎩
b if f (x) ≥ b
f (x) if a < f (x) < b
a if f (x) ≤ a

.

First observe that if a ≥ MZ, then Ega,b(X) ≤ (a + b)/2 and therefore

Var (ga,b(X)) ≥ P{ga,b(X) = b}
4

(b – a)2 =
P{Z ≥ b}

4
(b – a)2.

On the other hand, we may use the Efron–Stein inequality to obtain an upper bound for
the variance of ga,b(X). To this end, observe that if f (x) ≤ a then ga,b(x̃(i)) ≥ ga,b(x), for
x̃(i) = (x1, . . . , xi–1, x′i , xi+1, . . . , xn) and so
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n∑
i=1

E
(
ga,b(X) – ga,b

(
X̃(i)

))2
= 2

n∑
i=1

E
(
ga,b(X) – ga,b

(
X̃(i)

))2
+

≤ 2E

[
1{Z>a}

n∑
i=1

(
ga,b(X) – ga,b

(
X̃(i)

))2
+

]
≤ 2vP{Z > a}

where, in the last step, we used the fact that condition (3.4) implies that

n∑
i=1

(
ga,b(X) – ga,b

(
X̃(i)

))2
+
≤

n∑
i=1

(
f (X) – f

(
X̃(i)

))2
+
≤ v.

Comparing the obtained upper and lower bounds for Var (ga,b(X)), we get

b – a ≤
√
8v
P{Z > a}
P{Z ≥ b}

.

We may use this inequality to bound the distance between quantiles of Z. To this
end, let 0 < δ < γ ≤ 1/2 and choose a = Q1–γ and b = Q1–δ . Then P{Z > a} ≤ γ and
P{Z ≥ b} ≥ δ and therefore the distance between any two quantiles of Z (to the right of
the median) can be bounded as

Q 1–δ – Q 1–γ ≤
√
8vγ
δ

.

It is instructive to choose γ = 2–k and δ = 2–(k+1) for some integer k ≥ 1. Then, denoting
ak = Q1–2–k , we get

ak+1 – ak ≤ 4
√
v,

so the difference between consecutive quantiles corresponding to exponentially decreasing
tail probabilities is bounded by a constant. In particular, by summing this inequality for
k = 1, . . . ,m, we have am+1 ≤ MZ + 4m

√
vwhich implies that for all t > 0,

P{Z > MZ + t} ≤ 2–t/(4
√
v).

In Chapter 6 we will be able to improve this tail bound by showing that the exponent is, in
fact, of the order of –t2/v, that is, tail probabilities of functions satisfying condition (3.4)
decrease in a sub-Gaussian manner. We emphasize that we have derived more than just
bounds for tail probabilities as we have obtained explicit, nonasymptotic bounds for the
distance between quantiles.Wemay call these “local” tail bounds. Inmany cases, these local
bounds can also be sharpened to reveal the sub-Gaussian nature of the tails. This will be
shown in Section 9.3 building on hypercontractivity arguments.
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An alternative route to obtain exponential bounds is by applying the Efron–Stein
inequality to exp (λZ/2) with λ > 0. Then, by the mean-value theorem,

EeλZ –
(
E
[
eλZ/2

]2) ≤ E

[ n∑
i=1

(
eλZ/2 – eλZ

′
i/2
)2
+

]

≤ λ2

4
E

[ n∑
i=1

eλZ (Z – Z′
i)
2
+

]
.

Now we may use our condition (3.4) to derive

EeλZ –
(
E
[
eλZ/2

])2 ≤ vλ2

4
EeλZ

or equivalently (
1 –

vλ2

4

)
F (λ) ≤ (F (λ/2))2 ,

where F(λ) = Eeλ(Z–EZ). We may now use the above functional inequality to control
the moment generating function. The solution is based on elementary calculus and is
summarized in the following lemma.

Lemma 3.19 Let g : (0, 1) → (0,∞) be a function such that limx→0 (g(x) – 1) /x = 0. If
for every x ∈ (0, 1) (

1 – x2
)
g(x) ≤ g(x/2)2,

then

g(x) ≤ (
1 – x2

)–2 .
Proof We easily derive, by induction, that

g (x) ≤ (
g
(
x2–k

))2k k∏
j=0

(
1 –

(
x2–j

)2)–2j .
The assumption on the behavior of the function g at 0 ensures that
limk→∞

(
g
(
x2–k

))2k = 1. Hence, the previous inequality implies that

log g (x) ≤
∞∑
j=0

2j
[
– log

(
1 –

(
x2–j

)2)]. (3.5)
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Now by concavity of the logarithm, –u–1 log(1 – u) is a nondecreasing function of
u ∈ (0, 1) and therefore, for every integer j,

– log
(
1 –

(
x2–j

)2) ≤ 2–2j
[
– log

(
1 – x2

)]
.

Plugging this inequality in (3.5) leads to

log g (x) ≤ [
– log

(
1 – x2

)] ∞∑
j=0

2–j

and the result follows. �

Since F (0) = 1 and F′(0) = 0, we may apply Lemma 3.19 to the function
x → F

(
2xv–1/2

)
and get, for every λ ∈ (

0, 2v–1/2
)
,

F (λ) ≤
(
1 –

λ2v
4

)–2

. (3.6)

Thus, the Efron–Stein inequality may be used to prove exponential integrability of Z.
Moreover, since by (3.6) F

(
v–1/2

) ≤ 2, byMarkov’s inequality, for every t > 0,

P {Z – EZ ≥ t} ≤ 2e–t/
√
v.

This inequality has the same form as the one derived using the first method of this section
but now we bound deviations from the mean instead of the median and the constants are
somewhat better.

In Chapter 6 we derive Gaussian instead of exponential-like tail bounds. Another way
of exploiting (3.6) is to bound – log (1 – u) by u (1 – u)–1 and conclude that for every
λ ∈ (

0, 2v–1/2
)

log F (λ) ≤ λ2v
2 (1 – (λ2v/4))

≤ λ2v
2
(
1 –

(
λ
√
v/2

)) .
This bound for themoment-generating functionmeans thatZ – EZ is a sub-gamma random
variable with variance factor v and scale parameter c =

√
v/2, as introduced in Section 2.4.

The calculations of that section show that for all t > 0,

P
{
Z – EZ ≥ √

2vt + ct
}
≤ e–t . (3.7)

Since c =
√
v/2, we see that as soon as t is not too small (say, t ≥ 1), the linear term in

the expression
√
2vt + ct dominates the other one. This is the reason why one cannot inter-

pret (3.7) as a sub-Gaussian inequality. In subsequent chapters we establish inequalities like
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(3.7) with much more interesting values for c. The case c = 0 is of course the most interest-
ing one but in some circumstances we will get moderate values for c, typically depending on
a uniform bound on the increments Z – Z′i .

3.7 The Gaussian Poincaré Inequality

The Efron–Stein inequality can be successfully applied to prove a sharp bound for the vari-
ance of a smooth function of a standard Gaussian random vector, known as the Gaussian
Poincaré inequality. This result is a prelude to various related inequalities discussed in
Chapter 5.

Theorem 3.20 (GAUSSIAN POINCARÉ INEQUALITY) Let X = (X1, . . . ,Xn) be a vector of
i.i.d. standard Gaussian random variables (i.e. X is a Gaussian vector with zero mean vec-
tor and identity covariance matrix). Let f : Rn → R be any continuously differentiable
function. Then

Var (f (X)) ≤ E
[∥∥∇f (X)

∥∥2].
Proof Wemay assume that E

∥∥∇f (X)
∥∥2 < ∞ since otherwise the inequality is trivial. The

proof is based on a double use of the Efron–Stein inequality. A first straightforward use
of it reveals that it suffices to prove the theorem when the dimension n equals 1. Thus,
the problem reduces to show that

Var (f (X)) ≤ E
[
f ′(X)2

]
, (3.8)

where f : R → R is any continuously differentiable function on the real line and X is
a standard normal random variable. First, notice that it suffices to prove this inequal-
ity when f has a compact support and is twice continuously differentiable. Now let
ε1, . . . , εn be independent Rademacher random variables and introduce

Sn = n–1/2
n∑
j=1

εj.

Since for every i

Var(i) (f (Sn)) =
1
4

(
f
(
Sn +

1 – εi√
n

)
– f

(
Sn –

1 + εi√
n

))2

,

applying the Efron–Stein inequality again, we obtain

Var (f (Sn)) ≤ 1
4

n∑
i=1

E

[(
f
(
Sn +

1 – εi√
n

)
– f

(
Sn –

1 + εi√
n

))2
]
. (3.9)

The central limit theorem implies that Sn converges in distribution to X, where X has
the standard normal law. Hence Var (f (Sn)) converges to Var (f (X)). Let K denote
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the supremum of the absolute value of the second derivative of f . Taylor’s theorem
implies that, for every i,

∣∣∣∣f (Sn + 1 – εi√
n

)
– f

(
Sn –

1 + εi√
n

)∣∣∣∣ ≤ 2√
n
|f ′ (Sn)| +

2K
n

and therefore

n
4

(
f
(
Sn +

1 – εi√
n

)
– f

(
Sn –

1 + εi√
n

))2

≤ f ′ (Sn)2 +
2K√
n
|f ′ (Sn)| +

K2

n
.

This and the central limit theorem imply that

lim sup
n→∞

1
4

n∑
i=1

E

[(
f
(
Sn +

1 – εi√
n

)
– f

(
Sn –

1 + εi√
n

))2
]
= E

[
f ′ (X)2

]
,

which means that (3.9) leads to (3.8) by letting n go to infinity. �

A straightforward consequence of the Gaussian Poincaré inequality is that, whenever
f : Rn → R is Lipschitz, that is, for all x, y ∈ Rn

|f (x) – f (y)| ≤ ‖x – y‖

and X is a standard Gaussian random vector, then

Var (f (X)) ≤ 1.

Indeed, using an approximation argument (like convolutionwith a smooth kernel) onemay
always assume that f is differentiable and if this is the case then supx

∥∥∇f (x)
∥∥ ≤ 1 and the

inequality easily follows from Theorem 3.20.

3.8 A Proof of the Efron–Stein Inequality Based onDuality

The Efron–Stein inequality is the first example of various closely related concentration
inequalities. In order to better prepare similar results in a more general context, we provide
an alternative proof based on a duality, rather than an orthogonality, argument.

Consider first the following elementary duality formula:
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Proposition 3.21 If Y is a real-valued square-integrable random variable (Y ∈ L2 in
short), then

Var (Y) = sup
T∈L2

(2 Cov (Y ,T) – Var (T)) .

Proof The proof is simple: since Var (Y – T) ≥ 0, and

Var (Y – T) = Var (Y) – 2 Cov(Y ,T) + Var (T),

we have

Var (Y) ≥ 2 Cov (Y ,T) – Var (T)

and since this inequality becomes an equality whenever T = Y , the duality formula
follows. �

Nowwemay consider the telescoping sum

Z2 – (EZ)2 =
n∑
i=1

(
(EiZ)2 – (Ei–1Z)2

)
,

which leads to

Var (Z) =
n∑
i=1

E
[
(EiZ)2 – (Ei–1Z)2

]
.

Note that on the one hand, this decomposition does not require any orthogonality argu-
ment. On the other hand, it is equivalent to the identity Var (Z) =

∑n
i=1 E

[
�2

i
]
which

served as our starting point in proving Theorem 3.1. Indeed, for every i = 1, . . . , n, by
orthogonality between Ei–1Z and�i, the Pythagorean theorem implies that

E
[
�2

i
]
= E

[
(EiZ)2 – (Ei–1Z)2

]
.

Similarly to our first proof of the Efron–Stein inequality, the independence of the variables
X1, . . . ,Xn is used by noting that

Ei–1Z = E(i) [EiZ]

and therefore

E
[
(EiZ)2 – (Ei–1Z)2

]
= E

[
Var(i) (EiZ)

]
.
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In other words, we have proven the following alternative formulation (using independence
but without using the orthogonality structure of the martingale differences):

Var (Z) =
n∑
i=1

E
[
Var(i) (EiZ)

]
. (3.10)

It remains to commute the Var(i) and Ei operators and this is precisely the step where we
use a duality argument.

Lemma 3.22 For every i = 1, . . . , n,

E
[
Var(i) (EiZ)

]
≤ E

[
Var(i) (Z)

]
.

Proof Applying the duality formula of Proposition 3.21 conditionally onX(i), we show that
for any square-integrable variable T,

2Cov(i)(Z,T) – Var(i)(T) ≤ Var(i)(Z). (3.11)

But if we take T to be (X1, . . . ,Xi)-measurable, then

E
[
Cov(i) (Z,T)

]
= E

[
Z
(
T – E(i)T

)]
= E

[
EiZ

(
T – E(i)T

)]
= E

[
Cov(i) (EiZ,T)

]
.

Hence, choosing T = EiZ leads to

E
[
Cov(i) (Z,EiZ)

]
= E

[
Var(i) (EiZ)

]
,

and therefore, by (3.11),

E
[
Var(i) (EiZ)

]
≤ E

[
Var(i) (Z)

]
. �

Combining Lemma 3.22 with the decomposition (3.10) leads to

Var (Z) ≤
n∑
i=1

E
[
Var(i) (Z)

]
which is equivalent to the Efron–Stein inequality.

Note that there is no measure-theoretic trap here since by Fubini’s theorem, the con-
ditional expectations that we are dealing with can all be defined from regular versions
of conditional probabilities. Hence it is perfectly legal to use the duality formula for the
conditional variance as we did above.
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3.9 Bibliographical Remarks

The Efron–Stein inequality got its name from Efron and Stein (1981). While the original
result of Efron and Stein had some extra conditions and came with a sub-optimal constant,
Steele (1986) and Rhee and Talagrand (1986) obtained improved versions and the form
presented in Theorem 3.1. The proof shown in Section 3.1 appears in Rhee and Talagrand
(1986).

In statistics, the jackknife estimate is attributed toQuenouille (1949) andTukey (1958).
For surveys and related methods we refer to Efron and Tibshirani (1994), and Politis,
Romano, andWolf (1999).

The behavior of Z = f (X1, . . . ,Xn) in the bin packing problem, when X1, . . . ,Xn are
independent random variables, has been extensively studied (see, for example, Rhee and
Talagrand (1987), Rhee (1993), and Talagrand (1995)).
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30 years (seeChvátal and Sankoff (1975), Deken (1979), Dančík and Paterson (1994), and
Steele (1982, 1996)). This was one of the first applications of the Efron–Stein inequality,
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(see Houdré, Lember, andMatzinger (2006), Lember andMatzinger (2009), and Amsalu,
Houdré, andMatzinger (2012)).

Configuration functions were defined by Talagrand (1995, Section 7). Our definition,
taken from Boucheron, Lugosi andMassart (2000), is a slight modification of Talagrand’s.

The relative stability of the L1 error of the kernel density estimate is due to Devroye
(1988, 1991). For more on the behavior of the L1 error of the kernel density estimate we
refer to Devroye and Györfi (1985), and Devroye and Lugosi (2000).

Concentration properties of self-bounding functions have been studied by Boucheron,
Lugosi, and Massart (2000, 2009), Rio (2001), Bousquet (2002a), Maurer (2006), and
McDiarmid and Reed (2006).

The Vapnik–Chervonenkis dimension and growth function were introduced in the
pioneering work of Vapnik and Chervonenkis (1971, 1974).

The fact that the longest increasing sub-sequence in a random permutation of n num-
bers satisfies EL(X) ∼ 2

√
n is due to Logan and Shepp (1977) (see also Hammersley

(1972), Aldous and Diaconis (1995), and Groeneboom (2002)). The celebrated paper
of Baik, Deift, and Johansson (2000) establishes the limit distribution of L(X). This res-
ult implies that Var (L(X)) = O(n1/3). Ledoux (2005) obtains nonasymptotic exponential
tail inequalities which have the best possible orders of magnitude. For early work on the
concentration on L(X) we refer to Frieze (1991), Bollobás and Brightwell (1992), and
Talagrand (1995).

The limit theorem for the longest increasing sub-sequence in a random string over
a finite alphabet mentioned in Example 3.11 is due to Tracy and Widom (2001) and
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Johansson (2001) (see also Its, Tracy, and Widom (2001), and Houdré and Litherland
(2009)).

Ever since the pioneering paper of Vapnik and Chervonenkis (1971), Rademacher aver-
ages have played a central role in the theory of empirical processes and statistical learning
theory. For more information on the behavior of Rademacher averages and on their role
in learning theory see, for example, Giné and Zinn (1984), Devroye, Györfi, and Lugosi
(1996), Vapnik (1998), van der Vaart and Wellner (1996), Dudley (1999), Bartlett and
Mendelson (2002), Koltchinskii (2001, 2006), and Boucheron, Bousquet, and Lugosi
(2005a). For a modern account of the behavior of the expectation of Rademacher averages
(and more general empirical processes) we refer to Talagrand (2005).

For the role of conditional Rademacher averages in probability in Banach spaces, see
among others, Ledoux and Talagrand (1991) and Talagrand (1995). For the role in stat-
istical learning theory, see, among others, Koltchinskii (2001), Koltchinskii and Panchenko
(2000), Bartlett, Boucheron, and Lugosi (2002a), Bartlett andMendelson (2002), Bartlett,
Bousquet, and Mendelson (2002b), Boucheron, Bousquet, and Lugosi (2005a), and
Massart (2006).

The problem of first passage percolation was introduced by Hammersley and Welsh
(1965). The fact that the variance of first passage percolation in Zd between the ori-
gin and ne1 (where e1 is the first canonical basis vector in Zd) is bounded by a linear
function of n was first shown by Kesten (1993). Benjamini, Kalai and Schramm (2003)
proved an upper bound of order n/ log n for a certain distribution of the edge weights (see
also Benaïm and Rossignol (2006) for more general results). However, it is conjectured
that the correct order for the variance is O(n2/3) (see, for example Bramson and Durrett
(1999)).

The argument for bounding the variance of the largest eigenvalue of a random sym-
metric matrix is based on Alon, Krivelevich, and Vu (2002) who prove an exponential
tail bound which we reproduce later. The phenomenon that the variance is asymptotic-
ally bounded was already discovered by Füredi and Komlós (1981), who also prove a limit
theorem for the largest eigenvalue when the distributions of the entries are identical and
have positive expectation. The case where the entries are centered has been settled by
Soshnikov (1999).

The asymptotic value limm→∞ ETm = ζ (3) of the expected weight of the minimum
spanning tree was determined by Frieze (1985). The limit theoremmentioned in Example
3.15 is due to Janson (1995) andWästlund (2005).

The randomized solution for the routing problem described in Example 3.16 was
proposed by Valiant and Brebner (1981) (see also Valiant (1982) for related results).

Theorem 3.17 was proved independently by Bobkov (1996) and Ledoux (1997).
Lidskii’s inequality, used in Example 3.18, appears in Lidskii (1950).

The first argument of Section 3.6 is based on an idea sketched by Benjamini, Kalai
and Schramm (2003) and elaborated by Devroye and Lugosi (2008). The moment-
generating function approach was apparently developed first by Aida and Stroock (1994).
Our calculations follow those of Bobkov and Ledoux (1997).

The proof of theGaussian Poincaré inequality presented here is borrowed fromAné et al.
(2000).
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3.10 EX ERC I S E S

3.1. Let Z be a nonnegative random variable such that Z2 has a chi-square distribution
withD degrees of freedom. Prove that

√
D – 1 ≤ EZ ≤ √

D.

3.2. Assume that the random variables X1, . . . ,Xn are independent and binary {–1, 1}-
valued with P{Xi = 1} = pi and that f : {–1, 1}n → R has the bounded differences
property with constants c1, . . . , cn. Show that if Z = f (X1, . . . ,Xn),

Var (Z) ≤
n∑
i=1

c2i pi(1 – pi).

3.3. (ORDER STATISTICS) Assume that the random variables X1, . . . ,Xn are inde-
pendent. Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote a nondecreasing rearrangement
of X1, . . . ,Xn. Prove that, no matter what the distribution of the Xi’s is,
Var (X(n)) ≤ E[(X(n) – X(n–1))2]. Compute the left-hand side and the right-hand
side when the Xi’s are exponentially distributed with parameter 1 or when the
Xi’s are uniformly distributed on [0, 1]. (Use the fact that if the Xi’s are expo-
nentially distributed with parameter 1, the coordinates of the random vector
(X(1),X(2) – X(1), . . . ,X(n) – X(n–1)) are independent and exponentially distributed
with parameters 1/n, 1/(n – 1), . . . , 1.)

3.4. (JACKKNIFE ESTIMATE OF THE BIAS) Consider a sequence of estimates
Z = fn(X1, . . . ,Xn) of a parameter θ and assume that its bias satisfies EZ – θ =
c/n + O(n–2) for some constant c. By using the jackknife estimate of the bias
defined by

B = (n – 1)

(
1
n

n∑
i=1

Zi – Z

)

where Zi = fn–1(X1, . . . ,Xi–1,Xi+1, . . . ,Xn), onemay define the bias-corrected estim-
ate Z̃ = Z – B. Show that the bias of Z̃ satisfiesEZ̃ – θ = O(n–2). (Quenouille, 1949.)

3.5. (AMONG LIPSCHITZ FUNCTIONS THE SUM HAS THE LARGEST VARIANCE)
Consider the class F of functions f : Rn → R that are Lipschitz with respect to
the �1 distance, that is, if x = (x1, . . . , xn) ∈ Rn and y = (y1, . . . , yn) ∈ Rn, then
|f (x) – f (y)| ≤∑n

i=1 |xi – yi|. Let X = (X1, . . . .Xn) be a vector of independent ran-
dom variables with finite variance. Use the Efron–Stein inequality to show that the
maximal value of Var (f (X)) over f ∈ F is attained by the function f (x) =

∑n
i=1 xi.

(Bobkov and Houdré, 1996).
3.6. (JACKKNIFE ESTIMATE OF THE VARIANCE OF THE MEDIAN) Assume that the

random variables X1, . . . ,Xn are independent and uniformly distributed on [0, 1].
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Let X(1) ≤ X(2) ≤ · · · ≤ X(n) denote a nondecreasing rearrangement of X1, . . . ,Xn.
Assume n is even. Check that

Var
(
X(n/2)

) ≤ n
2
E
[(
X(n/2) – X(n/2–1)

)2] .
Compute the right-hand side and the left-hand side, as well as their limiting value
when n → ∞. Is the jackknife estimate of the variance of the median consistent?
What is its limiting distribution?

3.7. Complete the proof of the fact that the conditional Rademacher average has the self-
bounding property.

3.8. Consider the example of the number of distinct values in a discrete sample described
in the text. Show that EZ/n → 0 as n → ∞. Calculate explicitely Var (Z) and
compare it with the upper bound obtained by the Efron–Stein inequality.

3.9. Let Z be the number of triangles in a random graph G(n, p). Calculate the variance
of Z and compare it with the result obtained using the Efron–Stein inequality. (In
the G(n, p) model for random graphs, the random graph G = (V , E) with vertex set
V (|V | = n) and edge set E is generated by starting from the complete graph with n
vertices and deleting each edge independently from the others with probability 1 – p.
A triangle is a complete three-vertex subgraph.)

3.10. Consider the problem of first passage percolation on the d-dimensional integer lat-
tice Zd between the origin and a vertex v ∈ Zd. Show that if the distribution of the
weights of the edges is such that Xi takes its values in the interval [a, b] for some
0 < a < b < ∞ then the number of edges on the minimumweight path is bounded
by (b/a)‖v‖1.

3.11. Consider the adjacency matrix A = (Xi,j)n×n of a random graph G(n, p). (That is,
Xi,j = 1 if vertex i is connected to vertex j andXi,j = 0 otherwise.) Show that the expec-
ted value of the largest eigenvalue of A is at least (n – 1)p. (This simple lower bound
is apparently asymptotically correct, see Füredi and Komlós (1981).)

3.12. Consider a random graph G(n, p) with p = c log n/n, where c > 1. Show how the
probability that the random graph is not connected is at most 2

(
em(1–c)/2 – 1

)
+

2m+1m–(c–1)m/4 (Erdős and Rényi, 1960), and (Palmer, 1985).
3.13. (THE ASSIGNMENT PROBLEM) In the assignment problem, given an m× m array

{Xi,j}m×m of independent random variables distributed uniformly on [0, 1], one
considers the random quantity

Zm = min
π

m∑
i=1

Xi,π(i)

where the minimum is taken over all permutations π of {1, . . . ,m}. Mimic
the argument given for the minimum weight spanning tree to show that
Var (Zm) = O(log2 m/m). (A few samples from the vast literature on the assignment
problem include Aldous (2001), Linusson and Wästlund (2004), Nair, Prabhakar
and Sharma (2005), and Talagrand (1995).)
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3.14. Show that if one employs the shortest-path routing strategy described in Example
3.16 then there exists a permutation σ such that the maximal congestion over any
edge is at least 2N/2/N. In fact, much more is true: Valiant (1982) showed that
no oblivious deterministic routing algorithm can have maximal congestion less than
�
(
2N/2/N

)
where a deterministic routing algorithm is said to be oblivious if the path

from u to σ (u) only depends on the value of σ (u) and not on any other aspect of
the permutation σ . Even if a routing algorithm chooses a shortest path between u
and σ (u) at random, it is bound to suffer a maximal congestion of order�

(
2αN

)
for

some α > 0.
3.15. Prove that in the randomized routing scheme defined in Example 3.16 the expected

value of themaximal congestion, over any edge, isO(N) (Valiant andBrebner, 1981).
3.16. (LIDSKII’S INEQUALITY) Let A = (ai,j)ni,j=1 and B = (bi,j)ni,j=1 be two symmetric

matrices. Let (λi(A))i=1,...,n and (λi(B))i=1,...,n denote the nonincreasing rearrange-
ments of their eigenvalues. Recall that

√
tr(AAT) is the Hilbert–Schmidt (or

Frobenius) norm of A. Prove the following version of Lidskii’s inequality:

n∑
i=1

(λi(A) – λi(B))2 ≤ ‖A – B‖2HS =
n∑

i,j=1

(ai,j – bi,j)2.

Hint: prove that there exists an orthogonal matrixQ = (qi,j)ni,j=1 such that

n∑
i,j=1

(ai,j – bi,j)2 =
∥∥diag(λi(A))Q – Qdiag(λi(B))

∥∥2
HS

=
n∑

i,j=1

q2i,j(λi(A) – λj(B))2.

where diag(λi(A)) and diag(λi(B)) are two diagonal matrices with diagonal entries
matching the eigenvalues of A and B. Let P = (pi,j)ni,j=1 be a doubly stochastic matrix,
and prove that

∑n
i,j=1 p

2
i,j(λi(A) – λj(B))2 is minimized if P is the identity matrix. You

may proceed by repeated exchanges. Assume that for some k < �, pk,� �= 0, check that
there exists another doubly stochastic matrix P′ = (p′i,j)ni,j=1 with

∑
i�=j P′2i,j <

∑
i�=j P2i,j

and
∑n

i,j=1 p
′2
i,j(λi(A) – λj(B))2 <

∑n
i,j=1 p

2
i,j(λi(A) – λj(B))2. This elementary proof

is due to Wilkinson (see Marshall and Olkin (1979), Horn and Johnson (1990),
Bhatia (1997), andGarling (2007) formore and related inequalities). This inequality
is sometimes referred to as the Hoffman-Wielandt inequality. See also Terence Tao’s
blog <http://terrytao.wordpress.com>, course 254a.

3.17. Modify the argument of Section 3.6 to show that if f is such that there exists a
constant v such that

∑n
i=1(Z – Z′

i)
2
– ≤ v and B = supx,x′i |f (x) – f (x

′
i)| then for all

0 < δ < γ ≤ 1/2 such thatQ1–γ ≥ MZ + B,

Q1–δ – Q1–γ ≤ B +
√
8vγ
δ

.

http://terrytao.wordpress.com
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3.18. Mimic the argument of Section 3.6 to show that if f is a self-bounding func-
tion then

√ak+1 –
√
ak ≤ ck for a universal constant c which implies P{Z >

MZ + t} ≤ Ce–
√
t/C for another constant C. This tail bound will also be sharpened

considerably in Chapter 6.
3.19. (VARIANCE OF THE SQUARE ROOT) Let X be a nonnegative random variable such

that for some a > 0, Var (X) ≤ aEX. Prove that

Var
(√

X
)
≤ a.

Hint: the method of Exercise 5.8 may be useful.
3.20. Assume that f is a nonnegative valued function defined on X n. Let X1, . . . ,Xn be

independent random variables taking values in X and let Z = f (X1, . . . ,Xn). Let
Zi = infxi∈X f (X1, . . . ,Xi–1, xi,Xi+1, . . . ,Xn) and letV =

∑n
i=1(Z – Zi)2. Assume that

there exists a random variableW such that

V ≤ WZ.

Prove that

Var
(√

Z
)
≤ EW .

3.21. (A POISSON POINCARÉ INEQUALITY) Let f be a real-valued function defined
on the set of nonnegative integers and denote its “discrete derivative” by
Df (x) = f (x + 1) – f (x). Let X be a Poisson random variable with parameter
EX = μ. Prove that

Var (f (X)) ≤ μE
[
(Df (X))2

]
.

Hint: use the Efron–Stein inequality and the infinite divisibility of the Poisson dis-
tribution. (See Klaassen (1985) and Kontoyiannis, Harremoës, and Johnson (2005)
for more on this topic.)

3.22. (A POINCARÉ INEQUALITY FOR THE EXPONENTIAL DISTRIBUTION) Let X be
a real-valued random variable with symmetric exponential distribution, that is with
density (1/2)e–|x| for x ∈ R. Prove that for any differentiable function f for which
Var (f (X)) < ∞,

Var (f (X)) ≤ 4E
[
(f ′(X))2

]
.

Hint: use the fact that

E[f (X)] = f (0) + E
[
sgn(X)f ′(X)

]
.

See Ledoux (1999).
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3.23. (VARIANCE OF THE SQUARE-ROOT OF A POISSON RANDOM VARIABLE) Prove
that if X is a Poisson random variable, then

Var
(√

X
)
≤ (EX)E

[
1

4X + 1

]
.

Hint: use the Poisson Poincaré inequality of Exercise 3.21. See van der Vaart (1998)
for statistical applications of this inequality in the so-called method of “variance
stabilization.” For bounds on E[1/(X + 1)], see Arlot (2007).

3.24. (VARIANCE OF SUPREMA OF GAUSSIAN PROCESSES) Let T be a finite index
set and let (Xt)t∈T be a centered Gaussian vector. Let Z = maxt∈T Xt . Show that
Var (Z) ≤ maxt∈T Var (Xt).



4

Basic Information Inequalities

This chapter introduces a series of inequalities which have their origin in different fields,
such as geometry, combinatorics, and information theory. These elementary results, which,
for historical reasons, we call information inequalities, will be the basis of exponential
concentration inequalities for functions of various independent random variables.

In the first seven sections we concentrate on discrete random variables. This simplified
setting allows us to present the main ideas in an elementary and transparent way. First
we introduce the concepts of Shannon entropy and relative entropy. After summarizing
their most basic properties, we prove a simple elementary entropy inequality, called Han’s
inequality, which has surprisingly far-reaching consequences. In Section 4.4 we show how
some basic isoperimetric inequalities on the binary hypercube follow as simple applica-
tions of Han’s inequality. In Section 4.5, as another combinatorial application of Han’s
inequality, we see that combinatorial entropies satisfy the self-bounding property, leading
to interesting concentration properties of such functions.

For the purposes of this book, the perhaps most important application of Han’s inequal-
ity is the sub-additivity of entropy proved in Section 4.7. This inequality is at the core of
the so-called “entropy method” for proving concentration inequalities (see Chapters 5,
6 and 12).

In Section 4.8 we abandon the restricted world of discrete random variables and intro-
duce the notion of relative entropy in a general, measure-theoretic framework. The key
tool is a duality formula for entropy, shown in Section 4.9, which allows us to derive a
simple ‘‘transportation cost” lemma (see Section 4.10). We also describe a fundamental
result known as Pinsker’s inequality which is at the basis of a successful method for prov-
ing concentration inequalities called the “transportation method” (see Chapter 8). The
duality formula for relative entropy may also be used to establish a variety of properties
of relative entropy (see the exercises) and to investigate the maximum error probability in
multiple hypothesis testing (see Section 4.12).We also present a proof of the sub-additivity
of entropy for general random variables.

The chapter is concluded by the Brunn–Minkowski inequality, a fundamental result that
lies at the intersection of analysis, convex geometry, and information theory.
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4.1 Shannon Entropy and Relative Entropy

Let X be a random variable taking values in the countable set X with distribution
defined by

P{X = x} = p(x) for all x ∈ X .

The Shannon entropy (or simply entropy) of X is defined by

H(X) = E[– log p(X)] = –
∑
x∈X

p(x) log p(x)

(where log denotes natural logarithm and we agree on the convention 0 log 0 = 0).
Here we use the traditional notationH(X) for the entropy of a random variable X. This

notation may be somewhat misleading sinceH(X) is not a function of the random variable
X but rather a functional of the distribution of X.

The entropy is obviously nonnegative. A direct consequence of the fact that
x �→ –x log x is a concave function on [0,∞) is that the entropy is a concave functional in
the sense that if the distribution of X is a mixture of two probability distributions, then the
entropy ofX is at least as large as the corresponding convex combination of the entropies of
the two distributions.

A closely related important concept is that of relative entropy. Let P andQ be two prob-
ability distributions over a countable set X with probability mass functions p and q. Then
the Kullback–Leibler divergence or relative entropy of P andQ is

D(P‖Q) =
∑
x∈X

p(x) log
p(x)
q(x)

if P is absolutely continuous with respect toQ and infinite otherwise.
A basic property is that the relative entropy between P andQ is nonnegative, and equals

zero if and only if P = Q . This follows simply by observing that if P is absolutely continuous
with respect toQ , since log x ≤ x – 1 for all x > 0,

D(P‖Q) = –
∑

x∈X :p(x)>0

p(x) log
q(x)
p(x)

≥ –
∑

x∈X :p(x)>0

p(x)
(
q(x)
p(x)

– 1
)
≥ 0.

This observation has some interesting consequences. The simplest of these follows by tak-
ing Q to be the uniform distribution over a finite set X . If X is a random variable with
distribution P, then

D(P‖Q) = log |X | – H(X).

The nonnegativity of the relative entropy implies that

H (X) ≤ log |X |

and equality holds if and only if X is uniformly distributed overX .
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The entropy has a key role in information theory. Exercises 4.1 and 4.2 sketch some of
the basic ideas.

4.2 Entropy on Product Spaces and the Chain Rule

As our primary interest is in functions of several independent random variables, we pay
special attention to the Shannon entropy of distributions on product spaces. If (X, Y) is a
pair of discrete random variables taking values inX × Y then the joint entropy H(X, Y) of
X and Y is defined as the entropy of the pair (X, Y).

Let the probability mass function of the joint distribution P of (X, Y) be defined by
(p(x, y))x,y∈X×Y . The probability mass functions of the marginal distributions of X and Y
are denoted by pX and pY . Then

H(X) + H(Y) – H(X, Y) =
∑
x,y

p(x, y) log
p(x, y)

pX(x)pY (y)
.

The latter expression is the relative entropy between the joint distributionP and the product
of marginal distributions PX ⊗ PY and therefore, it is nonnegative and equals zero if and
only if X and Y are independent. This implies the sub-additivity of the Shannon entropy:

H(X, Y) ≤ H(X) + H(Y)

and equality holds if and only if X and Y are independent.

Remark 4.1 The quantity H(X) + H(Y) – H(X, Y) is usually called the mutual informa-
tion between X and Y . The Shannon entropy of a random variable may be defined as
the mutual information between a random variable and itself.

The conditional entropy H(X|Y) is defined as

H(X|Y) = H(X, Y) – H(Y).

Observe that if we write the joint probability mass function p(x, y) = P{X = x, Y = y} and
the conditional probability mass function p(x|y) = P{X = x|Y = y}, then

H(X|Y) = –
∑

x∈X ,y∈Y
p(x, y) log p(x|y)

=
∑
y∈Y

pY (y)

(
–
∑
x∈X

p(x|y) log p(x|y)

)
= E

[
– log p

(
X|Y

)]
.

As the conditional entropy is the expected value of the Shannon entropy of conditional
distributions, we see thatH(X|Y) ≥ 0.
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Consider a pair of random variables X, Y with joint distribution PX,Y and marginal
distributions PX and PY . Noting that

D(PX,Y‖PX ⊗ PY) = H(X) – H(X|Y),

the nonnegativity of the relative entropy implies that H(X) ≥ H(X|Y), or in other words,
conditioning decreases entropy.

It is similarly easy to see that this fact also remains true for conditional entropies, that is,

H(X|Y) ≥ H(X|Y ,Z).

It is easy to see that the defining identity of the conditional entropy remains true
conditionally, that is, for any three (discrete) random variables X, Y ,Z,

H(X, Y |Z) = H(Y |Z) + H(X|Y ,Z).

Just add H(Z) to both sides and use the definition of the conditional entropy. A repeated
application of this yields the chain rule for entropy: for arbitrary discrete random variables
X1, . . . ,Xn,

H(X1, . . . ,Xn) = H(X1) + H(X2|X1) + H(X3|X1,X2)
+ · · · + H(Xn|X1, . . . ,Xn–1).

An analogous chain rule for relative entropies is given in Exercise 4.4.

4.3 Han’s Inequality

Here we use the basic information-theoretic inequalities described in the previous sections
to derive some simple and general inequalities for the joint entropy of several variables.
Interestingly, these results have some immediate but nontrivial implications concerning the
combinatorics of product spaces. We start with the simplest version.

Theorem 4.1 (HAN’S INEQUALITY) Let X1, . . . ,Xn be discrete random variables. Then

H(X1, . . . ,Xn) ≤ 1
n – 1

n∑
i=1

H(X1, . . . ,Xi–1,Xi+1, . . . ,Xn).

Proof For any i = 1, . . . , n, by the definition of the conditional entropy and the fact that
conditioning reduces entropy,

H(X1, . . . ,Xn)
= H(X1, . . . ,Xi–1,Xi+1, . . . ,Xn) + H(Xi|X1, . . . ,Xi–1,Xi+1, . . . ,Xn)
≤ H(X1, . . . ,Xi–1,Xi+1, . . . ,Xn) + H(Xi|X1, . . . ,Xi–1).
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Summing these n inequalities and using the chain rule for entropy, we get

nH(X1, . . . ,Xn) ≤
n∑
i=1

H(X1, . . . ,Xi–1,Xi+1, . . . ,Xn) + H(X1, . . . ,Xn)

which is what we wanted to prove. �

4.4 Edge Isoperimetric Inequality on the Binary Hypercube

In order to demonstrate the usefulness of Han’s inequality, we show how it can be used to
derive isoperimetric properties of the n-dimensional binary hypercube. It will be a recurring
theme of this book that isoperimetric inequalities are intimately related to concentration of
measure. This is the first and simplest illustration of the phenomenon.

Consider the binary hypercube {–1, 1}n and for any x, x′ ∈ {–1, 1}n, define the
Hamming distance

dH(x, x′) =
n∑
i=1

1{xi �=x′i}.

The elements x of the binary n-cube may be considered as vertices of a graph in which
two elements x and x′ of {–1, 1}n are adjacent if and only if their Hamming distance is 1.
The graph structure has N = 2n vertices and n2n–1 undirected edges. Its density (the ratio
between the number of edges and the number of vertices) is thus n/2 = (log2N)/2.

A remarkable property of the binary n-cube is that for any subsetA ⊆ {–1, 1}n, the dens-
ity of the subgraph induced by A is at most (log2 |A|)/2. This is the message of the next
statement which may be considered as an isoperimetric theorem for the binary hypercube.
Note that equality is achieved if the graph induced by A is a lower-dimensional hypercube,
since ifA is a hypercube of dimension d ≤ n, then the subgraph induced byA has 2d vertices
and E(A) = d2d–1 edges.

Theorem 4.2 Let A be a subset of {–1, 1}n. Let E(A) denote the set of edges of the subgraph
induced by A, that is, the collection of (unordered) pairs (x, x′) with x, x′ ∈ A such that
dH(x, x′) = 1. Then

|E(A)| ≤ |A|
2

× log2 |A|.

Proof Define the random vectorX = (X1, . . . ,Xn) taking values in {–1, 1}n such thatX has
the uniform distribution over A. Denote by p the probability mass function of X. The
Shannon entropy of X is clearly log |A|. Writing X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn),
and using the definition of conditional entropy, we have

H(X) – H
(
X(i)

)
= H

(
Xi|X(i)

)
= –

∑
x∈A

p(x) log p
(
xi|x(i)

)
.
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By definition, p(x) = 1/|A| for all x ∈ A. On the other hand, for x ∈ A,

p
(
xi|x(i)

)
=
{
1/2 if x(i) ∈ A
1 otherwise

where x(i) = (x1, . . . , xi–1, –xi, xi+1, . . . , xn) is obtained by flipping the i-th bit of x.
Thus,

H(X) – H
(
X(i)

)
=
log 2
|A|

∑
x∈A

1{x,x(i)∈A}

and therefore

n∑
i=1

(
H(X) – H

(
X(i)

))
=
log 2
|A|

∑
x∈A

n∑
i=1

1{x,x(i)∈A} =
|E(A)|
|A|

2 log 2.

Thus, Han’s inequality implies

|E(A)|
|A|

2 log 2 =
n∑
i=1

(
H(X) – H

(
X(i)

))
≤ H(X) = log |A|.

This is precisely what we wanted to prove. �

Next we show how Theorem 4.2 can be turned into an inequality for the edge-
perimeter of A, or equivalently for the total influence of the n variables. Let the binary
random vector X = (X1, . . . ,Xn) be uniformly distributed over {–1, 1}n and denote by
X(i) = (X1, . . . ,Xi–1, –Xi,Xi+1, . . . ,Xn) the vector obtained by flipping the i-th bit of X. For
any A ⊂ {–1, 1}n, the influence of the i-th variable is defined by

Ii(A) = P
{
1{X∈A} �= 1{X(i)∈A}

}
.

If 1{X∈A} �= 1{X(i)∈A}, then the i-th variable is said to be pivotal for A. Thus, the influence
Ii(A) is just the probability that the i-th variable is pivotal forA. The total influence is defined
by the sum of individual influences

I(A) =
n∑
i=1

Ii(A).

Clearly, I(A) = 2|∂E(A)|/2n where ∂E(A) is the edge boundary of A defined by

∂E(A) =
{
(x, x′) : x ∈ A, x′ ∈ Ac, dH(x, x′) = 1

}
.

The following bound for the total influence is a simple corollary of Theorem 4.2.
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Theorem 4.3 For any A ⊂ {–1, 1}n, let P(A) denote P{X ∈ A} = |A|/2n. Then

I(A) ≥ 2P(A) log2
1

P(A)
.

Proof Since A is a subset of the n-cube, every point in A belongs to exactly n edges, so

n|A| = 2|E(A)| + |∂E(A)|

(since every edge with both endpoints in A is counted twice), and by Theorem 4.2,

|∂E(A)| ≥
(
n – log2 |A|

)× |A| = log2
2n

|A|
× |A|

which is equivalent to the statement of the theorem. �

Remark 4.2 The random variable Z = 1{X∈A} may be considered as a function of the n
independent random variables X1, . . . ,Xn. Then Var (Z) = P(A)(1 – P(A)) and the
Efron–Stein inequality immediately implies

P(A)(1 – P(A)) ≤ I(A)
4

.

When P(A) is small, Theorem 4.3 gives a much better bound.

Influences of subsets of the binary hypercube are basic in the study of threshold phenom-
ena, percolation, game theory, complexity theory, and many other areas. In Chapters 9 and
10 we devote more effort to the understanding of this fundamental quantity.

4.5 Combinatorial Entropies

In Section 3.3 we considered functions satisfying a special property—the so-called
self-bounding property—that have interesting concentration properties. In particular,
Corollary 3.7 shows that if f is self-bounding and X1, . . . ,Xn are independent random
variables, then Z = f (X1, . . . ,Xn) satisfies Var (Z) ≤ EZ.

In Section 3.3 several examples of such functions are discussed. The purpose of this
section is to show a whole new class of self-bounding functions that we call combinatorial
entropies. The self-bounding property of these functions may be seen as an easy con-
sequence of Han’s inequality. The basic idea is quite similar to that of the proof of Theorem
4.2. We start by describing a simple example. The general case, shown below, mimics the
same argument.

Example 4.4 (VC ENTROPY) In this first example we consider the so-called Vapnik–
Chervonenkis (or VC) entropy, a quantity closely related to the VC dimension dis-
cussed in Section 3.3. Let A be an arbitrary collection of subsets of X , and let
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x = (x1, . . . , xn) be a vector of n points ofX . Recall that the shatter coefficient is defined
as the size of the trace ofA on x, that is,

T(x) = |tr(x)| =
∣∣{A ∩ {x1, . . . , xn} : A ∈ A}

∣∣ .
The VC entropy is defined as the logarithm of the shatter coefficient, that is,

h(x) = log2 T(x).

Lemma 4.5 The VC entropy has the self-bounding property.

Proof We need to show that there exists a function h′ of n – 1 variables such that for all
i = 1, . . . , n, writing x(i) = (x1, . . . , xi–1, xi+1, . . . , xn), 0 ≤ h(x) – h′(x(i)) ≤ 1 and

n∑
i=1

(
h(x) – h′

(
x(i)

))
≤ h(x).

We define h′ in the natural way, that is, as the VC entropy based on the n – 1 points in
its arguments. Then, for any i, h′(x(i)) ≤ h(x), and the difference cannot bemore than
one. The nontrivial part of the proof is to show the second property. We do this using
Han’s inequality (Theorem 4.1).

Consider the uniform distribution over the set tr(x). This defines a random binary
vector Y = (Y1, . . . , Yn) ∈ {0, 1}n. Then

h(x) = log2 |tr(x)| =
1

log 2
H(Y1, . . . , Yn),

whereH(Y1, . . . , Yn) is the (joint) Shannon entropy of Y1, . . . , Yn. Since the uniform
distribution maximizes the Shannon entropy, we also find, for all i ≤ n, that

h′
(
x(i)
)
≥ 1

log 2
H(Y1, . . . , Yi–1, Yi+1, . . . , Yn).

Since by Han’s inequality

H(Y1, . . . , Yn) ≤ 1
n – 1

n∑
i=1

H(Y1, . . . , Yi–1, Yi+1, . . . , Yn),

we obtain

n∑
i=1

(
h(x) – h′

(
x(i)

))
≤ h(x)

as desired. �

The above lemma, together with Corollary 3.7 immediately implies the following.
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Corollary 4.6 Let X1, . . . ,Xn be independent random variables taking their values in some set
X and letA be an arbitrary collection of subsets ofX . If Z = h(X) denotes the random VC
entropy, then Var (Z) ≤ EZ.

In Chapter 6 we extend this result to exponential inequalities.
The proof of concentration of the VC entropy may be generalized, in a straightforward

way, to a class of functions we call combinatorial entropies defined as follows.
Let x = (x1, . . . , xn) be an n-vector of elements with xi ∈ Xi to which we associate a set

tr(x) ⊂ Yn of n-vectors whose components are elements of a possibly different set Y . We
assume that for each x ∈ X n and i ≤ n, the set tr(x(i)) = tr(x1, . . . , xi–1, xi+1, . . . , xn) is the
projection of tr(x) along the ith coordinate, that is,

tr(x(i)) =
{
y(i) = (y1, . . . , yi–1, yi+1, . . . , yn) ∈ Yn–1:

∃yi ∈ Y such that (y1, . . . , yn) ∈ tr(x)
}
.

The associated combinatorial entropy is h(x) = logb |tr(x)| where b is an arbitrary positive
number.

As in the case of VC entropy, combinatorial entropies may be shown to have the self-
bounding property. (The details are left as an exercise.) Then we immediately obtain the
following generalization.

Theorem 4.7 Assume that h(x) = logb |tr(x)| is a combinatorial entropy such that for all
x ∈ X n and i ≤ n,

h(x) – h(x(i)) ≤ 1.

If X = (X1, . . . ,Xn) is a vector of n independent random variables taking values inX , then
the random combinatorial entropy Z = h(X) satisfies Var (Z) ≤ EZ.

Example 4.8 (INCREASING SUB-SEQUENCES) Recall the setup of the example of increas-
ing sub-sequences of Section 3.3, and letN(x) denote the number of different increas-
ing sub-sequences of x. Observe that log2 N(x) is a combinatorial entropy. This is easy
to see by considering Y = {0, 1} and by assigning, to each increasing sub-sequence
i1 < i2 < · · · < im of x, a binary n-vector yn1 = (y1, . . . , yn) such that yj = 1 if and only
if j = ik for some k = 1, . . . ,m (i.e. the indices appearing in the increasing sequence are
marked by 1). Now the conditions of Theorem 4.7 are obviously met and therefore
Z = log2 N(X) satisfies Var (Z) ≤ EZ.

4.6 Han’s Inequality for Relative Entropies

In this section we derive an inequality which may be regarded as a version of Han’s
inequality for relative entropies. This inequality is fundamental in deriving a “sub-additivity”
inequality (see Section 4.7) which, in turn, is at the basis ofmany exponential concentration
inequalities.
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Let X be a countable set, and let P and Q be probability distributions on X n such that
P = P1 ⊗ · · · ⊗ Pn is a productmeasure.We denote the elements ofX n by x = (x1, . . . , xn)
and write x(i) = (x1, . . . , xi–1, xi+1, . . . , xn) for the (n – 1)-vector obtained by leaving out
the i-th component of x. Denote byQ (i) and P(i) the marginal distributions ofQ and P. Let
p(i) and q(i) denote the corresponding probability mass function, that is,

q(i)
(
x(i)
)
=
∑
y∈X

q(x1, . . . , xi–1, y, xi+1, . . . , xn)

and

p(i)
(
x(i)

)
=
∑
y∈X

p(x1, . . . , xi–1, y, xi+1, . . . , xn)

= p1(x1) · · · pi–1(xi–1)pi+1(xi+1) · · · pn(xn).

Then we have the following.

Theorem 4.9 (HAN’S INEQUALITY FOR RELATIVE ENTROPIES)

D(Q‖P) ≥ 1
n – 1

n∑
i=1

D
(
Q (i)‖P(i)

)
or equivalently,

D(Q‖P) ≤
n∑
i=1

(
D(Q‖P) – D

(
Q (i)‖P(i)

))
.

Proof The statement is a straightforward consequence of Han’s inequality. Indeed, Han’s
inequality states that

∑
x∈X n

q(x) log q(x) ≥ 1
n – 1

n∑
i=1

∑
x(i)∈X n–1

q(i)
(
x(i)

)
log q(i)

(
x(i)
)
.

Since

D(Q‖P) =
∑
x∈X n

q(x) log q(x) –
∑
x∈X n

q(x) log p(x)

and

D
(
Q (i)‖P(i)

)
=

∑
x(i)∈X n–1

(
q(i)

(
x(i)

)
log q(i)

(
x(i)

)
– q(i)

(
x(i)
)
log p(i)

(
x(i)

))
,
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it suffices to show that

∑
x∈X n

q(x) log p(x) =
1

n – 1

n∑
i=1

∑
x(i)∈X n–1

q(i)
(
x(i)
)
log p(i)

(
x(i)

)
.

This may be seen easily by noting that by the product property of P, we have
p(x) = p(i)(x(i))pi(xi) for all i, and also p(x) =

∏n
i=1 pi(xi), and therefore

∑
x∈X n

q(x) log p(x) =
1
n

n∑
i=1

∑
x∈X n

q(x)
(
log p(i)

(
x(i)
)
+ log pi(xi)

)
=
1
n

n∑
i=1

∑
x∈X n

q(x) log p(i)
(
x(i)
)
+
1
n

∑
x∈X n

q(x) log p(x).

Rearranging, we obtain

∑
x∈X n

q(x) log p(x) =
1

n – 1

n∑
i=1

∑
x∈X n

q(x) log p(i)
(
x(i)

)
=

1
n – 1

n∑
i=1

∑
x(i)∈X n–1

q(i)
(
x(i)
)
log p(i)

(
x(i)

)

where we used the defining property of q(i). �

4.7 Sub-Additivity of the Entropy

We are now prepared to prove an inequality which will serve as the basis of the so-called
“entropy method” for proving concentration inequalities. In Chapter 14 we give a much
more general version with further important consequences. The reason we give this simple
version here is that it is an easy corollary of Han’s inequality for relative entropies, and it is
sufficiently powerful to derive many interesting exponential concentration inequalities.

As in Section 3.1, we let X1, . . . ,Xn be independent random variables, and investigate
concentration properties ofZ = f (X1, . . . ,Xn). The basis of the entropymethod is a power-
ful extension of the Efron–Stein inequality. Recall that the Efron–Stein inequality states
that

Var (Z) ≤
n∑
i=1

E
[
E(i)[Z2] –

(
E(i)Z

)2]
,
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where E(i) denotes expectation with respect to the variable Xi only, that is, conditional
expectation conditioned on X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn), or, putting�(x) = x2,

E�(Z) – �(EZ) ≤
n∑
i=1

E
[
E(i)�(Z) – �

(
E(i)Z

)]
.

In fact, this inequality remains true for a large class of convex functions� (see Chapter 14).
The case of interest in this section is when �(x) = x log x. For a nonnegative random

variableZ, the quantityE�(Z) – �(EZ) is often called the entropy ofZ, denoted byEnt(Z).
This notion of entropy is not to be confusedwith the Shannon entropy introduced earlier in
this chapter. Nevertheless, there is a close relationship between the two notions of entropy.
As seen in the proof below, Ent(Z) may be written as the relative entropy between the
distribution induced by Z onX n and the distribution of X = (X1, . . . ,Xn).

Theorem 4.10 (SUB-ADDITIVITY OF THE ENTROPY) Let �(x) = x log x for x > 0 and
�(0) = 0. Let X1 . . . ,Xn be independent random variables taking values in a countable set
X and let f : X n → [0,∞). Letting Z = f (X1, . . . ,Xn), we have

E�(Z) – �(EZ) ≤
n∑
i=1

E
[
E(i)�(Z) – �

(
E(i)Z

)]
.

Introducing the notation Ent(i)(Z) = E(i)�(Z) – �(E(i)Z), this can be re-written as

Ent(Z) ≤ E

[
n∑
i=1

Ent(i)(Z)

]
.

Here we only state the result for discrete random variables X1 . . . ,Xn. However, the result
may be extended to the general case as is shown below in Section 4.8 (see also the more
general Theorem 14.1 in Chapter 14).

Proof The theorem is a direct consequence of Han’s inequality for relative entropies. First
note that if the inequality is true for a random variableZ then it is also true for cZwhere
c is a positive constant. Hence wemay assume that EZ = 1. Now define the probability
measureQ onX n by its probability mass function q given by

q(x) = f (x)p(x) for all x ∈ X n

where p denotes the probability mass function of X = (X1, . . . ,Xn) and P the corres-
ponding distribution. Then,

E�(Z) – �(EZ) = E[Z logZ] = D(Q‖P)
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which, by Theorem 4.9, does not exceed
∑n

i=1
(
D(Q‖P) – D(Q (i)‖P(i))). However,

straightforward calculation shows that

n∑
i=1

(
D(Q‖P) – D

(
Q (i)‖P(i)

))
=

n∑
i=1

E
[
E(i)�(Z) – �

(
E(i)Z

)]
and the statement follows. �

As a first application of the sub-additivity of the entropy, we derive a generalization of
the edge isoperimetric inequality Theorem 4.3 when the distribution of the random vector
X = (X1, . . . ,Xn) is such that X1, . . . ,Xn are independent binary random variables with
P{Xi = 1} = 1 – P{Xi = –1} = pwhere p ∈ (0, 1).

For an index i ≤ n, introduce the notation

X+
i = (X1, . . . ,Xi–1, 1,Xi+1, . . . ,Xn) and X–

i = (X1, . . . ,Xi–1, –1,Xi+1, . . . ,Xn).

Let A ⊂ {–1, 1}n be an arbitrary set. The positive and negative influences of the i-th variable
are defined as

I+i (A) = P
{
X+
i ∈ A and X–

i /∈ A
}

and

I–i (A) = P
{
X–
i ∈ A and X+

i /∈ A
}
.

The influence Ii(A) = P
{
1{X∈A} �= 1{X(i)∈A}

}
is just the sum I+i (A) + I–i (A) of posit-

ive and negative influences. The total positive and negative influences are defined as
I+(A) =

∑n
i=1 I

+
i (A) and I

–(A) =
∑n

i=1 I
–
i (A), respectively.

Theorem 4.11 Let A ∈ {–1, 1}n be any set and let the random vector be distributed as
described above. Then

P(A) log
1

P(A)
≤ I+(A)p log

1
p
+ I–(A)(1 – p) log

1
1 – p

where P(A) = P{X ∈ A}.

Proof The proof is a simple application of Theorem 4.10 for the random variable
Z = 1{X∈A}. Since�(1) = �(0) = 0, we always have�(Z) = 0, and the left-hand side
of the sub-additivity inequality is simply P(A) log(1/P(A)). On the other hand, for
each i,

�
(
E(i)Z

)
=

⎧⎨⎩
p log p if X+

i ∈ A and X–
i /∈ A

(1 – p) log(1 – p) if X–
i ∈ A and X+

i /∈ A
0 if the i-th variable is not pivotal.
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Therefore, the right-hand side of the sub-additivity inequality becomes

I+(A)p log
1
p
+ I–(A)(1 – p) log

1
1 – p

,

proving the statement. �

Note that in the symmetric case, that is, when p = 1/2, the statement reduces to
Theorem 4.3. Another important special case is when the set A is a monotone sub-
set of {–1, 1, }n. A set A ⊂ {–1, 1}n is said to be monotone if 1{x∈A} ≥ 1{y∈A} for all
x = (x1, . . . , xn) and y = (y1, . . . , yn) in {–1, 1}n such that xi ≥ yi for all i. If A is mono-
tone, the negative influence I–(A) equals zero, implying I(A) = I+(A), and we immediately
obtain the following.

Corollary 4.12 If A is a monotone subset of {–1, 1}n, then the total influence is bounded as

I(A) ≥ P(A) log 1
P(A)

p log 1
p

.

4.8 Entropy of General RandomVariables

Up to this point we have only considered the entropy of discrete random variables. This is
convenient as the main ideas can be explained in a more transparent way in this simple set-
ting. However, in order to establish general concentration inequalities, we need to handle
entropy of all kinds of random variables, not only those of a discrete distribution. In this
section we introduce a general notion of entropy and the rest of the chapter is dedicated to
describing some properties of this notion. In particular, in Section 4.9 we present a dual-
ity formula for entropy which allows us to derive a simple ‘‘transportation cost” lemma
(see Section 4.10). In Chapter 8 we explore how this transportation lemma and its vari-
ants can be used to establish concentration inequalities. Finally, in Section 4.13 we prove,
in its full generality, the sub-additivity of entropy thatwe already proved for discrete random
variables in Theorem 4.10.

Luckily, the general framework does not require sophisticated measure theoretic argu-
ments at all. We begin with a formal definition of relative entropy within a general frame-
work and elementary properties of entropy. These properties are essentially the same as in
the discrete case but their proofs are a little different.

As in Section 4.7, � denotes the function �(x) = x log x, defined on [0,∞) (where
0 log 0 is defined as 0). Let (�,A,P) be a probability space and let Y be a nonnegative
random variable defined on it such that Y is integrable, that is, EY =

∫
�
Y(ω)dP(ω) < ∞.

As before, we define the entropy of Y by

Ent(Y) = E�(Y) – �(EY).
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Note that since� is bounded frombelow by –e–1, the expressionE�(Y) ismeaningful even
if �(Y) is not integrable. Hence Ent(Y) is well defined for all nonnegative random vari-
ables. Since� is a convex function, by Jensen’s inequality, Ent(Y) is a nonnegative (possibly
infinite) quantity. Moreover Ent(Y) < ∞ if and only if�(Y) is integrable.

We may use this definition of entropy to introduce a general notion of the Kullback–
Leibler divergence as follows. If Y is a nonnegative random variable with EY = 1, we may
define another probability measure Q on (�,A) by Q(A) =

∫
A Y(ω)dP(ω) = E[Y1{A}]

for all A ∈ A. We write Q = YP for such a probability measure. The Kullback–Leibler
divergence (or relative entropy) ofQ with respect to P, is defined by

D (Q‖P) = Ent(Y).

To see that this definition is a generalization of the one introduced in Section 4.1 for discrete
probability distributions, observe that when � is at most countable and Q is absolutely
continuous with respect to P, then we may write Q = YP where the random variable Y is
defined by

Y(ω) =
{
q(ω)/p(ω) if p(ω) > 0
0 otherwise

and therefore

D(Q‖P) =
∑

ω∈�,p(ω)>0

q(ω) log
q(ω)
p(ω)

.

More generally, if Q � P, that is, if Q is absolutely continuous with respect to P, one
may always write Q = YP with Y defined by the expression above where p(x) = dP/dλ
and q(x) = dQ/dλ denote the densities of P andQ with respect to a common dominating
measure λ.

4.9 Duality and Variational Formulas

The next result gives an alternative characterization of the relative entropy, close in spirit to
the duality formula for the variance given in Proposition 3.21.

Theorem 4.13 (DUALITY FORMULA OF ENTROPY) Let Y be a nonnegative random vari-
able defined on a probability space (�,A,P) such that E�(Y) < ∞. Then we have the
duality formula

Ent(Y) = sup
U∈U

E [UY]

where the supremum is taken over the set U of all random variables U : � → R with
EeU = 1.
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Moreover, if U is such that E [UY] ≤ Ent(Y) for all nonnegative random variables Y
such that�(Y) is integrable and EY = 1, then EeU ≤ 1.

Remark 4.3 By elementary calculations one sees that for all u ∈ R,

sup
x>0

(xu – �(x)) = eu–1,

so if�(Y) is integrable and EeU = 1, we have

UY ≤ �(Y) +
1
e
eU .

ThereforeU+Y is integrable and one can always define E [UY] as E [U+Y] – E [U–Y]
(where U+ and U– denote the positive and negative parts of U). Thus, the right-hand
side of the duality formula of Theorem 4.13 is always well defined.

Remark 4.4 (ALTERNATIVE FORMULATION OF THE DUALITY FORMULA)Onemay re-
write the duality formula of Theorem 4.13 as

Ent(Y) = sup
T

E
[
Y(logT – log(ET))

]
where the supremum is taken over all nonnegative and integrable random variables.

Proof To prove the duality formula simply observe that, for any random variable U with
EeU = 1, we have

Ent(Y) – E [UY] = EnteUP
[
Ye–U

]
where EnteUP is defined as Ent with the only difference that expectations are
taken with respect to the probability measure eUP (instead of P). This shows that
Ent(Y) – E [UY] ≥ 0 with equality whenever eU = Y/EY . This proves the duality
formula.

Let U be such that E [UY] ≤ Ent(Y) for all nonnegative random variables Y such
that �(Y) is integrable. If EeU = 0, then there is nothing to prove. Otherwise, given
a positive integer n large enough to ensure that xn = Eemin(U,n) > 0, one may define
Yn = emin(U,n)/xn, which leads to

E [UYn] ≤ Ent(Yn),

and therefore

1
xn
E
[
Uemin(U,n)

]
≤ 1

xn

[
E
[
(min(U, n)) emin(U,n)

]
– log xn

]
.

Hence

log xn ≤ 0

and taking the limit when n → ∞, we show by monotone convergence that EeU ≤ 1,
which finishes the proof of the theorem. �
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The previous theorem makes it possible to establish a duality between entropy and
moment-generating functions.

Corollary 4.14 Let Z be a real-valued integrable random variable. Then for every λ ∈ R,

logEeλ(Z–EZ) = sup
Q�P

[
λ (EQZ – EZ) – D(Q‖P)]

where the supremum is taken over all probability measures Q absolutely continuous with
respect to P, and EQ denotes integration with respect to the measure Q (recall that E is
integration with respect to P).

As in Chapter 2, the logarithmic moment-generating function of a real-valued random
variable Z is denoted byψZ(λ) = logEeλZ for λ ∈ R.

Proof Let Q be a probability measure absolutely continuous with respect to P. Taking
Y = dQ/dP and choosing U = λ(Z – EZ) – ψZ–EZ(λ), it follows from the duality
formula of Theorem 4.13 that

D(Q‖P) = Ent(Y) ≥ E[UY] = λ(EQZ – EZ) – ψZ–EZ(λ),

or equivalently that

ψZ–EZ(λ) ≥ λ (EQZ – EZ) – D(Q‖P),

and therefore

logEeλ(Z–EZ) ≥ sup
Q ′�P

[
λ (EQ ′Z – EZ) – D(Q ′‖P)].

Conversely, setting

U = λ(Z – EZ) – sup
Q ′�P

[
λ (EQ ′Z – EZ) – D(Q ′‖P)]

for every nonnegative random variable Y such that EY = 1,

E [UY] ≤ Ent(Y).

Hence, by Theorem 4.13, EeU ≤ 1 which means that

logEeλ(Z–EZ) ≤ sup
Q ′�P

[
λ (EQ ′Z – EZ) – D(Q ′‖P)]. �

The duality formula implies the following property of the Kullback–Leibler divergence.
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Corollary 4.15 Let P andQ be two probability distributions on the same space. Then

D(Q‖P) = sup
Z

[
EQZ – logEeZ

]
where the supremum is taken over all random variables such that EeZ < ∞.

This corollary asserts that if P remains fixed, D(Q‖P) is the convex dual of the functional
Z → logEeZ.

Proof If Q � P, D(Q‖P) = Ent (dQ/dP) and the corollary follows from the alternat-
ive formulation of the duality formula. If Q �� P, there exists an event A such that
Q(A) > 0 = P(A), D(Q‖P) = ∞, and choosing Zn = n1{A} and letting n tend to
infinity, we observe that the supremum on the right-hand side is infinite. �

The duality formula for entropy and its corollaries have many useful consequences (see
Exercises 4.10, 4.11, and 4.13).

The last results in this section will be useful when developing the entropy method in
Chapters 5 and 6. It is well known that the expected value minimizes the average squared
Euclidean distance to a random point. This is an instance of a more general statement.

Theorem 4.16 (THE EXPECTED VALUE MINIMIZES EXPECTED BREGMAN DIVER-
GENCE) Let I ⊆ R be an open interval and let f : I → R be convex and differentiable.
For any x, y ∈ I, the Bregman divergence of f from x to y is f (y) – f (x) – f ′(x)(y – x). Let
X be an I-valued random variable. Then

E
[
f (X) – f (EX)

]
= inf

a∈I E
[
f (X) – f (a) – f ′(a)(X – a)

]
.

Taking f (x) = x log x, we obtain the following variational formula for entropy.

Corollary 4.17 Let Y be a nonnegative random variable such that E�(Y) < ∞. Then

Ent(Y) = inf
u>0

E
[
Y(log Y – log u) – (Y – u)

]
.

Proof Let a ∈ I. The difference between the expected Bregman divergence from a and the
expected Bregman divergence from EX

E
[
f (X) – f (EX) – f ′(EX)(X – EX)

]
= E

[
f (X) – f (EX)

]
satisfies

E
[
f (X) – f (a) – f ′(a)(X – a)

]
– E

[
f (X) – f (EX)

]
= E

[
–f (a) – f ′(a)(X – a) + f (EX)

]
= f (EX) – f (a) – f ′(a)(EX – a).

The last expression is the Bregman divergence of f from a to EX. As f is convex, it is
nonnegative. �
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Theorem 4.13 and Corollary 4.17 relate to the convexity of two different functions:
Theorem 4.13 is about the convexity of the entropy functional while Corollary 4.17 is about
the convexity of�(x) = x log x.

4.10 A Transportation Lemma

The duality formula of Corollary 4.14 allows one to relate the concentration property of
a random variable Z around its expectation to the so-called transportation cost, that is, the
“price” one has to pay when one computes the expectation of Z underQ rather than under
the original probability measure P.

To render this simple but subtle connection more explicit, the following transportation
lemmamay be illuminating.

Lemma 4.18 Let Z be a real-valued integrable random variable. Let φ be a convex and con-
tinuously differentiable function on a (possibly unbounded) interval [0, b) and assume that
φ(0) = φ′(0) = 0. Define, for every x ≥ 0, φ∗(x) = supλ∈(0,b) (λx – φ(λ)), and let, for
every t ≥ 0, φ∗–1(t) = inf

{
x ≥ 0 : φ∗(x) > t

}
. Then the following two statements are

equivalent:
(i) for every λ ∈ (0, b),

logEeλ(Z–EZ) ≤ φ(λ);

(ii) for any probability measure Q absolutely continuous with respect to P such that
D(Q‖P) < ∞,

EQZ – EZ ≤ φ∗–1 [D(Q‖P)].
In particular, given v > 0,

logEeλ(Z–EZ) ≤ vλ2

2

for every λ > 0 if and only if for any probability measure Q absolutely continuous with
respect to P and such that D(Q‖P) < ∞,

EQZ – EZ ≤
√
2vD(Q‖P).

Proof As a direct consequence of Corollary 4.14 we see that (i) holds if and only if for every
distributionQ which is absolutely continuous with respect to P,

EQZ – EZ ≤ inf
λ∈(0,b)

(
φ(λ) + D(Q‖P)

λ

)
.



102 | B A S I C I N FORMAT ION IN EQUA L I T I E S

However, it follows from Lemma 2.4 that

φ∗–1 (D(Q‖P)) = inf
λ∈(0,b)

(
φ(λ) + D(Q‖P)

λ

)
,

which shows that (i) is equivalent to (ii). Applying the previous result with
φ(λ) = λ2v/2 for everyλ > 0 leads to the stated special case of equivalence since then
φ∗–1(t) =

√
2vt. �

The last inequality of Lemma 4.18 is related to what is usually termed a quadratic trans-
portation cost inequality. If � is a metric space, the probability measure P is said to satisfy a
quadratic transportation cost inequality if the last inequality of Lemma 4.18 holds for every
Zwhich is Lipschitz on�with Lipschitz norm at most 1. The link between quadratic trans-
portation cost inequalities and sub-Gaussian concentration inequalities is studied in greater
detail in Chapter 8, devoted to transportation inequalities.

4.11 Pinsker’s Inequality

Pinsker’s inequality relates the relative entropy of two probability distributions to their vari-
ational distance. Let P and Q be two probability measures on a measurable space (�,A).
The total variation or variational distance between P andQ is defined by

V(P,Q) = sup
A∈A

|P(A) – Q(A)|.

It is a well-known and simple fact that the total variation is half the L1-distance, that is, if λ is
a common dominating measure of P and Q and p(x) = dP/dλ and q(x) = dQ/dλ denote
their respective densities, then

V(P,Q) = P(A∗) – Q(A∗) =
1
2

∫
|p(x) – q(x)|dλ(x),

where A∗ = {x : p(x) ≥ q(x)}. We note that another important interpretation of the
variational distance is related to the best coupling of the two measures

V(P,Q) = minP{X �= Y},

where the minimum is taken over all pairs of joint distributions for the random vari-
ables (X, Y) whose marginal distributions are X ∼ P and Y ∼ Q . (The proof of these
well-known facts is left as Exercise 4.5).

The importance of Pinsker’s inequality in statistics stems from the fact that it provides
a lower bound for the error of certain hypothesis testing problems. We use Pinsker’s
inequality for a completely different purpose, namely for establishing a transportation cost
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inequality that may be used to prove concentration inequalities. The proof of Pinsker’s
inequality derives easily from Hoeffding’s inequality via the transportation cost bound of
Lemma 4.18.

Theorem 4.19 (PINSKER’S INEQUALITY) Let P and Q be probability distributions on
(�,A) such thatQ � P. Then

V(P,Q)2 ≤ 1
2
D(Q‖P).

Proof Define the random variable Y such that Q = YP and let A∗ = {Y ≥ 1} be the set
achieving themaximum in the definition of the total variation between P andQ . Then,
setting Z = 1{A∗},

V(P,Q) = Q{A∗} – P{A∗} = EQZ – EZ.

It follows fromHoeffding’s lemma (Lemma 2.2) that for any λ > 0,

ψZ–EZ(λ) ≤ λ2

8

which, by Lemma 4.18, leads to

EQZ – EZ ≤
√
1
2
D(Q‖P),

concluding the proof. �

4.12 Birgé’s Inequality

Next we show how the ideas already used in the proof of Pinsker’s inequality
may be used to prove a sharper version. Then we use this inequality for deriv-
ing a lower bound for the probability of error in multiple testing problems. Let
h(q, p) = q log(q/p) + (1 – q) log((1 – q)/(1 – p)) be the relative entropy between two
Bernoulli distributions, with parameters q and p. Then we have the following strengthened
version of Theorem 4.19.

Theorem 4.20 Let P andQ be probability distributions on (�,A) such thatQ � P. Then

sup
A∈A

h(Q{A},P{A}) ≤ D(Q‖P).

Proof For any p ∈ [0, 1], let

φp(λ) = log
(
p
(
eλ – 1

)
+ 1

)
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denote the logarithm of the moment-generating function of the Bernoulli(p) distribu-
tion where λ ∈ R. By Corollary 4.15, for any A ∈ A, and λ ≥ 0,

D(Q‖P) ≥ EQ [λ1{A}] – logEPeλ1{A} ,

and therefore

D(Q‖P) ≥ sup
λ≥0

(λQ{A} – φP{A}(λ)).

The theorem follows by noting that for any a ∈ [0, 1],

sup
λ>0

(
λa – φp(λ)

)
= h(p, a). �

Since h(Q{A},P{A}) ≥ 2(Q{A} – P{A})2, Theorem 4.20 implies Pinsker’s inequality.
Note also that Theorem 4.20 can be derived as a simple consequence of the so-called data
processing lemma (see Exercise 4.10).

The variational representation of relative entropy (Corollary 4.15)may be used to estab-
lish lower bounds for the probability of error in multiple testing problems. The next result
is a sharper version of Fano’s inequality, a classical tool from information theory.

Theorem 4.21 (BIRGÉ’S INEQUALITY) Let P0,P1, . . . ,PN be probability distri-
butions over (�,A) and let A0,A1, . . . ,AN ∈ A be pairwise disjoint events. If
a = mini=0,...,N Pi(Ai) ≥ 1/(N + 1),

a ≤ h
(
a,
1 – a
N

)
≤ 1

N

N∑
i=1

D(Pi‖P0).

Proof By the variational representation of relative entropy (Corollary 4.15), for any
i = 1, . . . ,N,

sup
λ>0

EPi
[
λ1{Ai}

]
– logEP0 e

λ1{Ai} ≤ D(Pi‖P0).

Observe that
∑N

i=1 P0(Ai) ≤ 1 – P0(A0) ≤ 1 – a. For any fixed λ ≥ 0

1
N

N∑
i=1

D(Pi‖P0) ≥ 1
N

N∑
i=1

(
λPi(Ai) – log

[
P0(Ai)(eλ – 1) + 1

])
≥ λa – log

(
1 – P0(A0)

N
(eλ – 1) + 1

)
≥ λa – log

(
1 – a
N

(eλ – 1) + 1
)
,
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where the second inequality follows from the concavity of the logarithm and
Jensen’s inequality. We may choose λ such that it satisfies h(a, (1 – a)/N) =
λa – log

( 1–a
N (eλ – 1) + 1

)
. �

4.13 Sub-Additivity of Entropy: The General Case

Wenow turn to the sub-additivity of entropy in a general measure theoretic framework.We
proved this inequality in Section 4.7 in the restricted setting of discrete random variables as
an easy consequence of Han’s inequality. In the general case our proof relies on the duality
formula of Theorem 4.13.

In Chapter 14 we present an even more general version of the sub-additivity of entropy.
As we will see there, it is deeply connected to the convexity of the entropy functional. In the
proof below we start from a decomposition that we already used to prove the Efron–Stein
inequality and then use the duality formula of Theorem 4.13.

Theorem 4.22 (SUB-ADDITIVITY OF ENTROPY) Let X1, . . . ,Xn be independent ran-
dom variables and let Y = f (X1, . . . ,Xn) be a nonnegative measurable function of these
variables such that �(Y) = Y log Y is integrable. For every 1 ≤ i ≤ n, denote by E(i)

the expectation operator conditioned on X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn). Denote by
Ent(i)(Y) the conditional entropy of Y, given X(i), defined by

Ent(i)(Y) = E(i)�(Y) – �
(
E(i)Y

)
.

Then

Ent(Y) ≤ E
n∑
i=1

Ent(i)(Y).

Proof Introduce the conditional expectation operator Ei [·] = E
[·|X1, . . . ,Xi

]
for

i = 1, . . . , n and the convention E0 = E. Noting that the operator En is just the
identity when restricted to the set of (X1, . . . ,Xn)-measurable and integrable random
variables, we have the decomposition

Y (log Y – log (EY)) =
n∑
i=1

Y (log (EiY) – log (Ei–1Y)).

Now the duality formula given in Remark 4.4 yields

E(i)
[
Y
(
log (EiY) – log

(
E(i) [EiY]

))]
≤ Ent(i)(Y).

Since X1, . . . ,Xn are independent, we have E(i) [EiY] = Ei–1Y and therefore taking
expectations on both sides of the decomposition above yields
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E [Y (log Y – log (EY))] =
n∑
i=1

E
[
E(i)

[
Y
(
log (EiY) – log

(
E(i) [EiY]

))]]
≤

n∑
i=1

E
[
Ent(i)(Y)

]
and Theorem 4.22 follows. �

Recall that in Section 4.7 the sub-additivity of entropy for discrete probability distribu-
tions is derived fromHan’s inequality (Theorem 4.1). The alternative proof given here has
the advantage that it works in a more general measure-theoretic framework. It is interest-
ing to notice that Han’s inequality itself can be derived from the sub-additivity of entropy.
In other words, for discrete probability distributions, the sub-additivity of entropy and
Han’s inequality are equivalent. Indeed, let X be a finite set of cardinality k and consider
a random variable X with values inX n. Setting X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn) for every
i = 1, . . . , n, recall that Han’s inequality tells us that

H(X) ≤ 1
n – 1

n∑
i=1

H
(
X(i)

)
.

Define Q as the distribution of X and let P be the uniform distribution on X n. Denote by
q the probability mass function of Q , that is, for every x ∈ X n, q(x) = P {X = x}. Setting
Y = dQ/dP, we have Y(x) = q(x)kn and

Ent(Y) = D(Q‖P) = –H(X) + n log k.

The inequality of Theorem 4.22 can be written in this case as

Ent(Y) ≤ E
n∑
i=1

Ent(i)(Y).

Now

E
[
Ent(1)(Y)

]
= Ent(Y) –

∑
x∈X n–1

(∑
t∈X

q(t, x)

)
log

(
kn–1

∑
t∈X

q(t, x)

)

= Ent(Y) + H
(
X(1)

)
– (n – 1) log k

and similarly, for all i,

E
[
Ent(i)(Y)

]
= Ent(Y) – (n – 1) log k + H

(
X(i)

)
.

Putting the pieces together, Han’s inequality follows.
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4.14 The Brunn–Minkowski Inequality

Next we present a classical result of convex geometry that is of fundamental importance
in a wide variety of areas, including analysis and information theory. We include it here
because it provides a short proof of the classical isoperimetric inequality (see Chapter 7).
To describe the basic inequality, consider sets A,B ⊂ Rn and define theMinkowski sum of
A and B as the set of all vectors inRn formed by sums of elements of A and B:

A + B = {x + y : x ∈ A, y ∈ B}.

Similarly, for c ∈ R, let c · A = {cx : x ∈ A}. Denote by Vol(A) the Lebesgue measure of a
(measurable) set A ⊂ Rn.

Theorem 4.23 (BRUNN–MINKOWSKI INEQUALITY) Let A,B ⊂ Rn be non-empty com-
pact sets. Then for all λ ∈ [0, 1],

Vol((1 – λ)A + λB)1/n ≥ (1 – λ)Vol(A)1/n + λVol(B)1/n.

Note that it is not necessary to assume compactness of A and B. We do it to avoid
having to worry about measurability of the Minkowski sum set (see Exercise 4.9). Many
different proofs of the Brunn–Minkowski inequality are known. Here we present possibly
the simplest one, based on a powerful functional generalization known as the Prékopa–
Leindler inequality. Before stating this, let us consider the special one-dimensional case of
Theorem 4.23. To see why the theorem is true in this case, notice first that if A ⊂ R and
c ≥ 0, then Vol(cA) = cVol(A) and therefore it suffices to prove that for any compact sets
A,B ⊂ R,

Vol(A + B) ≥ Vol(A) + Vol(B).

To see this, observe that none of the three volumes involved changes if the sets
A and B are translated arbitrarily. Now we may translate A to A′ = {a} + A and B to
B′ = {b} + B such that A′ ⊂ (–∞, 0], B′ ⊂ [0,∞), and A′ ∩ B′ = {0} (simply
pick a = – supA and b = – inf B). However, A′ ∪ B′ ⊂ A′ + B′ and therefore
Vol(A′ + B′) ≥ Vol(A′ ∪ B′) = Vol(A′) + Vol(B′), proving the one-dimensional Brunn–
Minkowski inequality.

The next inequality may be regarded as a functional generalization of the Brunn–
Minkowski inequality.

Theorem 4.24 (PRÉKOPA–LEINDLER INEQUALITY) Let λ ∈ (0, 1), and let f , g, h :
Rn → [0,∞) be nonnegative measurable functions such that for all x, y ∈ Rn,

h((1 – λ)x + λy) ≥ f (x)1–λg(y)λ.

Then ∫
Rn
h(x)dx ≥

(∫
Rn

f (x)dx
)1–λ (∫

Rn
g(x)dx

)λ

.
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Proof The proof goes by induction with respect to the dimension n. To prove the one-
dimensional case, consider measurable nonnegative functions f , g, h satisfying the
condition of the theorem. By the monotone convergence theorem, it suffices to prove
the statement for bounded functions f and g. Nowobserve that wemay assume, without
loss of generality, that supx∈Rn f (x) = supx∈Rn g(x) = 1. Then∫

R

f (x)dx =
∫ 1

0
Vol({x : f (x) ≥ t})dt

and ∫
R

g(x)dx =
∫ 1

0
Vol({x : g(x) ≥ t})dt.

For any fixed t ∈ [0, 1], if f (x) ≥ t and g(y) ≥ t, then by the hypothesis of the
theorem, h((1 – λ)x + λy) ≥ t. This implication may be re-written as

(1 – λ){x : f (x) ≥ t} + λ{x : g(x) ≥ t} ⊆ {x : h(x) ≥ t}.

Thus,∫
R

h(x)dx =
∫ ∞

0
Vol({x : h(x) ≥ t})dt

≥
∫ 1

0
Vol({x : h(x) ≥ t})dt

≥
∫ 1

0
Vol ((1 – λ){x : f (x) ≥ t} + λ{x : g(x) ≥ t}) dt

(by the inclusion above)

≥ (1 – λ)
∫ 1

0
Vol({x : f (x) ≥ t})dt + λ

∫ 1

0
Vol({x : g(x) ≥ t})dt

(by the one-dimensional Brunn–Minkowski inequality)

= (1 – λ)
∫

R

f (x)dx + λ

∫
R

g(x)dx

≥
(∫

R

f (x)dx
)1–λ (∫

R

g(x)dx
)λ

(by the arithmetic-geometric mean inequality)

and this proves the one-dimensional case.
For the induction step, assume that the theorem holds for all dimensions 1, . . . ,

n – 1 and let f , g, h : Rn → [0,∞),λ ∈ (0, 1) be such that they satisfy the assumption
of the theorem. Now let x, y ∈ Rn–1 and a, b ∈ R. Then

h(((1 – λ)x + λy, (1 – λ)a + λb)) = h((1 – λ)(x, a) + λ(y, b)) ≥ f (x, a)1–λg(y, b)λ
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so by the inductive hypothesis,

∫
Rn–1

h(x, (1 – λ)a + λb))dx ≥
(∫

Rn–1
f (x, a)dx

)1–λ (∫
Rn–1

g(x, b)dx
)λ

.

In other words, introducing

F(a) =
∫

Rn–1
f (x, a)dx, G(a) =

∫
Rn–1

g(x, a)dx,

and H(a) =
∫

Rn–1
h(x, a)dx,

we have

H((1 – λ)a + λb) ≥ F(a)1–λG(b)λ,

so by Fubini’s theorem and the one-dimensional inequality, we have

∫
Rn
h(x)dx =

∫
R

H(a)da

≥
(∫

R

F(a)da
)1–λ (∫

R

G(a)da
)λ

=
(∫

Rn
f (x)dx

)1–λ (∫
Rn

g(x)dx
)λ

as desired. �

Corollary 4.25 (A WEAKER BRUNN–MINKOWSKI INEQUALITY) Let A,B ⊂ Rn be com-
pact sets. Then for all λ ∈ [0, 1],

Vol((1 – λ)A + λB) ≥ Vol(A)1–λVol(B)λ.

Proof We apply the Prékopa–Leindler inequality with f (x) = 1{x∈A}, g(x) = 1{x∈B}, and
h(x) = 1{x∈(1–λ)A+λB}. To confirm that these functions satisfy the hypothesis of
Theorem 4.24, observe that f (x)1–λg(y)λ = 1{x∈A,y∈B} ≤ h((1 – λ)x + λy). �

Observe that Corollary 4.25 is weaker than Theorem 4.23 because by the arithmetic-
geometric mean inequality

(1 – λ)Vol(A)1/n + λVol(B)1/n ≥ Vol(A)(1–λ)/nVol(B)λ/n.
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Interestingly, however, onemay deduce the Brunn–Minkowski inequality starting from this
weaker form as follows.

Proof of Theorem 4.23. First observe that it suffices to prove that for all nonempty com-
pact sets A and B,

Vol(A + B)1/n ≥ Vol(A)1/n + Vol(B)1/n

because by replacing A by (1 – λ)A and B by λB we obtain the original statement.
Also notice that we may assume that Vol(A), Vol(B) > 0 because otherwise the
inequality holds trivially. Defining A′ = Vol(A)–1/nA and B′ = Vol(B)–1/nB, we have
Vol(A′) = Vol(B′) = 1. Therefore, by Corollary 4.25, for all λ ∈ (0, 1),

Vol((1 – λ)A′ + λB′) ≥ 1.

Finally, we apply this inequality with the choice

λ =
Vol(B)1/n

Vol(A)1/n + Vol(B)1/n
,

obtaining

1 ≤ Vol
(

1
Vol(A)1/n + Vol(B)1/n

A +
1

Vol(A)1/n + Vol(B)1/n
B
)

=
Vol(A + B)

(Vol(A)1/n + Vol(B)1/n)n
,

proving the Brunn–Minkowski inequality. �

TheBrunn–Minkowski inequality can be used to show that the uniformdistribution over
convex bodies exhibits the concentration of measure phenomenon (see Exercise 4.17).

4.15 Bibliographical Remarks

Information theory originated from Shannon’s celebrated paper (Shannon, 1948) which
introduced a general mathematical theory of communication. It was Shannon who defined
the basic notions of entropy, relative entropy, and mutual information, and proved their
significance in data compression and coding problems. However, very soon it became
apparent that the significance of Shannon’s techniques reached far beyond the engineer-
ing problems he had in mind, and today the toolbox of information theory is routinely used
in a wide variety of mathematical problems. For some excellent textbooks on the topic we
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refer to Gallager (1968), Csiszár and Körner (1981), Cover and Thomas (1991), MacKay
(2003), and Richardson and Urbanke (2008).

A geometric version of Han’s inequality appears as early as in 1948 in a paper by Loomis
and Whitney (1949). Han’s inequality, as described in Theorems 4.1 and 4.9, was derived
by Han (1978).

Different versions of the discrete isoperimetric inequalities of Theorems 4.2 and 4.3 go
back to Harper (1966), Loomis and Whitney (1949), and Hart (1976). The subsets of the
n-cube that maximize the edge-perimeter or the sum of average influences for a given car-
dinality and achieve equality in Theorem 4.2 have been described by Harper (see Bollobás
(1986)). These combinatorial inequalities have also been derived without resorting to
Han’s inequality (see for example Bollobás (1986)).

The fact that combinatorial entropies satisfy the self-bounding property was shown by
Boucheron, Lugosi, andMassart (2000).

The sub-additive property of entropy, often called tensorization inequality for entropy
appears in Gross (1975) (and see also Ledoux (1997), Bobkov and Ledoux (1997)).
Related inequalities may be found in Beckner (1989), Latała and Oleszkiewicz (2000),
Chafaï (2002), and Boucheron et al. (2005b). The proof of the general result of Theorem
4.22 is borrowed from Ané et al. (2000).

The notion of relative entropy also plays an important role in the theory of large devi-
ations which dates back to Cramér (1938) (see also Varadhan (1984), Deuschel and
Stroock (1989), Dembo and Zeitouni (1998), and Dupuis and Ellis (1997)). The vari-
ational formulation of relative entropy (Theorem 4.13) is also frequently used in large
deviations theory.

The link between quadratic transportation cost inequalities and Gaussian type con-
centration is well known (and see for example Marton (1996a), Dembo (1997), Bobkov
and Götze (1999)). In particular, Lemma 4.18 is inspired by a related result on quadratic
transportation cost inequalities in Bobkov and Götze (1999).

Theorem 4.19 was first proved by Pinsker (1964) with the worse constant 1, while
Csiszár (1967) established it with the optimal constant 1/2. For some sharper versions we
refer to Ordentlich andWeinberger (2005).

Theorem 4.21 is due to Birgé (2005). It improves on Fano’s lemma (see, e.g., Cover
and Thomas 1991) originally proved to estimate the probability of error in channel
coding theory. Beginning with the work of Ibragimov and Khasminskii (1981), Fano’s
lemma has been proved to be a fundamental tool in deriving minimax lower bounds in
statistics.

For the history of the Brunn–Minkowski inequality, its connection to numerous other
inequalities, and various applications, we refer the reader to the comprehensive text of
Schneider (1993) and to the survey by Gardner (2002). The Prékopa–Leindler inequal-
ity is established by Prékopa (1971, 1973) and Leindler (1972). The proof presented
here is from Brascamp and Lieb (1976). For nice surveys of applications of the Brunn–
Minkowski inequalities to concentration and convex geometry, see Ball (1997), Ledoux
(2001), Schechtman (2003), and Barthe (2003). The connection between the Brunn–
Minkowski inequality and concentration of measure was shown by Borell (1975). We
recommend the survey of Giannopoulos andMilman (2001).
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4.16 EX ERC I S E S

4.1. (KRAFT–MCMILLAN INEQUALITY) Let X denote a countable set, P a probabil-
ity distribution on X . Let Y denote a finite set called the encoding alphabet. A
uniquely decodable encoding of X using alphabet Y , is a mapping φ from X to the
set Y∗ of sequences of finite length over the encoding alphabet, such that for any
two sequences x1, . . . , xn and x′1, . . . , x′p of elements of X , if the concatenations of
φ(x1), . . . ,φ(xn) and φ(x′1), . . . ,φ′(x′n) are equal, then n = p, and xi = x′i for i ≤ n.
If x ∈ X , φ(x) is the codeword associated with x and |φ(x)| denotes the length of
the codeword. TheKraft–McMillan inequality asserts that for any uniquely-decodable
coding φ ofX on alphabetY∑

x∈X
|Y|–|φ(x)| ≤ 1.

Prove the Kraft–McMillan inequality. Use the Kraft–MacMillan inequality to prove
that the Shannon entropy with base |Y| is a lower bound on the average codeword
length under P:

H(X)
log |Y|

= E
[
– log|Y| p(X)

]
≤ E

∣∣φ(X)∣∣ .
4.2. (CONVERSE OF THE KRAFT–MCMILLAN INEQUALITY) Let � : X → {1, 2, . . .}

be such that ∑
x∈X

|Y|–�(x) ≤ 1.

Prove the converse of the Kraft–McMillan inequality: there exists a uniquely decodable
encoding φ such that for all x ∈ X , |φ(x)| = �(x). Use the converse of the Kraft–
McMillan inequality to prove that there exists a uniquely decodable encoding φ such
that

E
∣∣φ(X)∣∣ ≤ E

[
– log|Y| p(X)

]
+ 1 =

H(X)
log |Y|

+ 1.

4.3. (LOG–SUM INEQUALITY) Let a1, . . . , an and b1, . . . , bn denote two sequences of
positive integers. Prove that

∑
i

ai log
ai
bi

≥
(∑

i

ai

)
log

∑
i ai∑
i bi

.
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4.4. (CHAIN RULE FOR THE RELATIVE ENTROPY) Let P and Q denote two joint
distributions for X1, . . . ,Xn, let P1:i and Q1:i denote the marginal distributions of
X1, . . . ,Xi under P andQ , respectively. Let PXi|1...i–1 andQXi|1...i–1 denote the condi-
tional distribution of Xi with respect to X1, . . . ,Xi–1 under P and underQ . Show that

D (P‖Q) =
n∑
i=1

EP1:i–1
[
D
(
PXi|1...i–1‖QXi|1...i–1

)]
.

4.5. (PROPERTIES OF THE VARIATIONAL DISTANCE) Let P and Q be two probabil-
ity distributions on the same discrete set X . Prove that the total variation distance
V(P,Q) satisfies

V(P,Q) = P(A∗) – Q(A∗) =
1
2

∑
x∈X

|P(x) – Q(x)|,

where A∗ = {x : P(x) ≥ Q(x)}. (This identity is sometimes referred to as Scheffé’s
theorem (Scheffé, 1947).) Show that

V(P,Q) = minP{X �= Y},

where theminimum is taken over all pairs of random variables (X, Y) whosemarginal
distributions are X ∼ P and Y ∼ Q .

4.6. (DISCRETE LOOMIS–WHITNEY INEQUALITY) This exercise and the next illustrate
the fact that Han’s inequality has something simple to say about the combinatorics of
product spaces. Let A denote a finite subset of Zd and let Ai denote the projection of
A along the i-th coordinate. Show that

|A|d–1 ≤
d∏
i=1

|Ai|

(see Loomis andWhitney (1949)).
4.7. (DISCRETE ISOPERIMETRIC INEQUALITY IN Zd) Let A denote a finite subset of

Zd. Let B denote the canonical basis ofZd. Prove that the set ∂A defined by

∂A =
{
(x, y, s) : x ∈ A, y ∈ B, s ∈ {–1, 1}, x + sy /∈ A

}
has cardinality bounded as

|∂A| ≥ 2d|A|
d–1
d .

4.8. Assume that h(x) = logb |tr(x)| is a combinatorial entropy such that for all x ∈ X n

and i ≤ n,

h(x) – h
(
x(i)
)
≤ 1.

Show that h has the self-bounding property.
4.9. Prove that the Minkowski sum of two compact sets is compact.
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4.10. (KULLBACK–LEIBLER DIVERGENCE AND SUB-σ -ALGEBRAS, DATA PROCESSING
LEMMA) IfG is a σ -algebra of subsets ofX ,A ∈ G is said to be an atom inG if B ⊂ A
and B ∈ G \ {∅} then B = A. Let atom(G) denote the set of atoms of G. If P and Q
are probability measures overX , and G has countably many atoms, let

D(P‖Q |G) =
∑

A∈atom(G)

P(A) log
P(A)
Q(A)

.

Show that ifH ⊂ G whereH is a σ -algebra, then D(P‖Q |H) ≤ D(P‖Q |G). Show
that

D(P‖Q) = sup
{
D(P‖Q |G) : G has finitely many atoms.

}
.

Use this statement to prove Theorem 4.10 from Theorem 4.9 (that is, by checking
that Theorem 4.9 still holds when X is not countable). Hint: the first part follows
easily from the duality formula.

4.11. (CONVEXITY OF KULLBACK–LEIBLER DIVERGENCE) Prove that for any fixed
probability measure P on X , the function Q → D(Q‖P) is convex on the set of
probability distributions overX .Hint: use the duality representation.

4.12. (KULLBACK–LEIBLER DIVERGENCE WITH RESPECT TO A PRODUCT DISTRIBU-
TION) Let P denote a probability distribution overX × Y . Let PX and PY denote its
two marginal distributions and let QX and QY denote two probability distributions
overX andY . Prove that

D(P‖QX ⊗ QY) = D(P‖PX ⊗ PY ) + D(PX‖QX) + D(PY‖QY ).

4.13. (KULLBACK–LEIBLER DIVERGENCE AND LEGENDRE TRANSFORM OF LOGAR-
ITHMIC MOMENT-GENERATING FUNCTION) Let Z be a real-valued random vari-
able. Recall that ψZ(λ) = logEeλZ for λ ∈ R. Let ψ∗(t) = supλ∈R[λt – ψZ–EZ(λ)].
Prove that for all t > 0,

ψ∗(t) = inf
{
D(Q‖P) : EQZ – EZ ≥ t

}
.

4.14. (LAW OF RARE EVENTS) Let P be the probability distribution of a sum of n
independent Bernoulli random variables X1, . . . ,Xn with parameters p1, . . . , pn.
Let Po(μ) be the Poisson distribution with expectation μ =

∑n
i=1 pi. Prove

that V(P, Po(μ)) ≤∑n
i=1 p

2
i . Interpret this inequality by considering the Poisson

approximation of the binomial distribution with parameters n and μ/n. Hint: use
the infinite divisibility of the Poisson distribution and a coupling argument (see
Exercise 4.5). (See Barbour, Holst and Janson (1992) for a thorough treatment of
this topic.)

4.15. (LAW OF RARE EVENTS AND KULLBACK–LEIBLER DIVERGENCE) Let X1, . . . ,Xn
be (not necessarily independent) Bernoulli randomvariables, withEXi = pi for i ≤ n.
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Let Sn =
∑n

i=1 Xi, andμ = ESn. LetP denote the probability distribution of Sn and let
Po(μ) be the Poisson distribution with expectationμ. Prove that

D(P‖Po(μ)) ≤
n∑
i=1

p2i +
n∑
i=1

H(Xi) – H(X1, . . . ,Xn).

Hint: use the infinite divisibility of the Poisson distribution, the data processing
lemma (Exercise 4.10), and the previous exercise. (Note that this result can be com-
bined with Pinsker’s inequality in order to derive a sub-optimal upper bound on the
total variation distance between a binomial distribution and a Poisson distribution
with the same expectation.)

4.16. (PRÉKOPA–LEINDLER INEQUALITY ON R) Let λ ∈ (0, 1), and let f , g, h :
R → [0,∞) be nonnegative measurable functions such that for all x, y ∈ R,

h((1 – λ)x + λy) ≥ f (x)1–λg(y)λ.

Prove that ∫
R

h(x)dx ≥
(∫

R

f (x)dx
)1–λ (∫

R

g(x)dx
)λ

without resorting to the Brunn–Minkowski inequality on R. Hint: prove that it is
possible to define two functions x and y by∫ x(t)

–∞
f (u)du = t

∫ ∞

–∞
f (u)du and

∫ y(t)

–∞
f (u)du = t

∫ ∞

–∞
g(u)du

and let z(t) = (1 – λ)x(t) + λy(t). Verify that all three functions are differentiable
and that z′(t) ≥ (x′(t))1–λ (y′(t))λ. Use change of variables to finish the proof. See
Barthe (2003).

4.17. (BORELL’S LEMMA) Let C be a convex body (a compact convex set with non-
empty interior) inRn and let P be the uniform probability distribution over C. Prove
Borell’s lemma that states the following: if A is a symmetric convex subset of C with
P{A} > 1/2, then for any t > 1,

P
{
(tA)c

} ≤ P{A}
(
1 – P{A}
P{A}

)(t+1)/2

.

Hint: prove first that for t > 1,

2
t + 1

(tA)c +
t – 1
t + 1

A ⊆ Ac ,

where Ac is the complement of Awith respect toC. Then, use the Brunn–Minkowski
inequality. Does the statement remain true if the convexity and symmetry assump-
tions on A are relaxed? Borell’s lemma provides an example of the concentration
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of measure phenomenon. It asserts that, regardless of the dimension of the ambi-
ent space n and the convex body C, if A is a symmetric convex subset of C with
P{A} > 1/2, then P

{
(tA)c

}
decreases exponentially fast as t increases. See

Giannopoulos andMilman (2001).
4.18. (A CONSEQUENCE OF BORELL’S LEMMA)LetC be a convex body inRn and letP be

the uniform probability distribution over C. Assume X = (X1, . . . ,Xn) is distributed
according to P. Assume that EX = 0. Prove that there exists a universal constant κ

such that for p ≥ 2 and for all y ∈ Rn,

E

[∣∣∣∣∣
n∑
i=1

yiXi

∣∣∣∣∣
p]1/p

< κpE

[∣∣∣∣∣
n∑
i=1

yiXi

∣∣∣∣∣
2]1/2

.

Is it possible to tighten this inequality for some special convex bodies? Hint: use
Borell’s lemma (see Exercise 4.17). It is enough to check that P{

∣∣∑n
i=1 yiXi

∣∣ > t}
decays exponentially fast with t.

4.19. (AN ELEMENTARY VERSION OF THE BRUNN–MINKOWSKI INEQUALITY)Assume
that A and B are axis-parallel hyper-rectangles in Rn. Use the arithmetic-geometric
mean inequality to verify that

Vol(A + B)1/n ≥ Vol(A)1/n + Vol(B)1/n.

This statement is the first step of some proofs of the Brunn–Minkowski inequality
(see Stein and Shakarchi 2005).



5

Logarithmic Sobolev Inequalities

In this chapter we prove a few inequalities known as logarithmic Sobolev inequalities. The
simplest such result, stated and proved in Section 5.1 below, may be regarded as an exten-
sion of the edge isoperimetric inequality on the binary hypercube shown in the previous
chapter (Theorem 4.2). This inequality is surprisingly powerful. The application most
interesting to us in this chapter shows how this simple result can be used to prove a gen-
eral exponential concentration inequality for functions defined on the binary hypercube.
The passage between the logarithmic Sobolev inequality and the concentration bound is
achieved by a clever trick, the so-called Herbst argument (see Section 5.2). This is the
first instance of a general methodology that we explore in this book in detail. The proof
technique, called the entropy method, is based on various modifications of the logarithmic
Sobolev inequality and the Herbst argument. In Chapters 6 and 12 we explore this tech-
nique in detail, and derive concentration inequalities for general functions of independent
random variables, not only those defined over the binary hypercube.

In Sections 5.3 and 5.4 we extend the arguments from Bernoulli to Gaussian ran-
dom variables, obtaining a remarkably useful Gaussian concentration inequality whose
use is illustrated in Section 5.5 in proving a concentration inequality for the supremum
of a Gaussian process. We will return to Gaussian concentration in Chapter 10 where
a sharp form is presented. The Gaussian logarithmic Sobolev inequality shown here has
applications in a variety of areas of mathematics.

As an application of theGaussian logarithmic Sobolev inequality, in Section 5.6we derive
a more general version of the Johnson–Lindenstrauss theorem of Section 2.9.

In Section 5.7, we describe some statistical applications: a bound for the performance of
LASSO, and an �1-penalized least squares estimator. Gaussian concentration proves to be a
convenient tool for such model selection problems in quite general Gaussian models.

In Sections 5.8 and 5.9, we establish a collection of closely related results, starting from
the so-called Bonami–Beckner inequality. This so-called hypercontractive inequality has its
origins in harmonic analysis and has countless applications in a variety of areas.
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In Section 5.10, we close this chapter by invokingGaussian hypercontractive inequalities
to prove a challenging tail bound for the largest eigenvalue of random matrices from the
Gaussian unitary ensemble.

5.1 Symmetric Bernoulli Distributions

The purpose of this section is to prove the simplest of a large family of inequalities, generally
referred to as logarithmic Sobolev inequalities. For this simplest instance we consider real-
valued functions defined on the binary hypercube f : {–1, 1}n → R. Consider a uniformly
distributed binary vector X = (X1, . . . ,Xn) on the hypercube {–1, 1}n. In other words, the
components of X are independent, identically distributed random sign (Rademacher) vari-
ables with P{Xi = –1} = P{Xi = 1} = 1/2. Consider the induced real-valued random vari-
able Z = f (X). The logarithmic Sobolev inequality presented here relates two functionals
of f that have already appeared in Chapters 3 and 4. One of them is the entropy

Ent( f ) = E
[
f (X) log( f (X))

]
– Ef (X) logEf (X),

defined for nonnegative functions f ≥ 0. We use either Ent( f ) or Ent(Z) interchangeably
to denote the entropy of Z = f (X). The other functional is a quantity familiar from the
Efron–Stein inequality,

E( f ) = 1
2
E

[
n∑
i=1

(
f (X) – f

(
X̃(i)

))2]

where X̃(i) = (X1, . . . ,Xi–1,X′
i ,Xi+1, . . . ,Xn) is obtained by replacing the i-th compon-

ent of X by an independent copy X′
i . Recall that by the Efron–Stein inequality,

Var ( f (X)) ≤ E( f ). Since X is uniformly distributed, E( f ) may be written in a slightly
more convenient form

E( f ) = 1
4
E

[ n∑
i=1

(
f (X) – f

(
X(i)

))2]
=
1
2
E

[ n∑
i=1

(
f (X) – f

(
X(i)

))2
+

]

where the random binary vector X(i) = (X1, . . . ,Xi–1, –Xi,Xi+1, . . . ,Xn) is obtained by
flipping the i-th component of X while leaving the others intact. One may think
about ∇if (x) = ( f (x) – f (x(i)))/2 as the i-th component of the discrete gradient vec-
tor ∇f (x) = (∇1 f (x), . . . ,∇n f (x)). With this notation, the Efron–Stein estimate of the
variance is just the expected squared norm of the discrete gradient: E( f ) = E‖∇f (X)‖2.
Theorem 5.1 (LOGARITHMIC SOBOLEV INEQUALITY FOR THE SYMMETRIC BER-

NOULLI DISTRIBUTION) Let f : {–1, 1}n → R be an arbitrary real-valued function
defined on the n-dimensional binary hypercube and assume that X is uniformly distributed
over {–1, 1}n. Then

Ent
(
f 2
) ≤ 2E( f ).
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Before proving the inequality, we point out that Theorem 5.1 is a common gen-
eralization of the edge isoperimetric inequality of Theorem 4.2 and of the Efron–
Stein inequality for the binary hypercube. Indeed, let A ⊂ {–1, 1}n be any subset of
the binary hypercube. Defining f (x) = 1{x∈A}, we have, writing P(A) = P{X ∈ A}, that
Ent( f 2) = –P(A) log P(A) and 4E( f ) = I(A) is just the total influence of A. In Chapter
9 we point out other deep connections between influences and logarithmic Sobolev
inequalities.

On the other hand, note that if f is nonnegative, Var ( f (X)) ≤ Ent( f 2) (see Exercise
5.1). One can also show (see Exercise 5.2) that for any function f : {–1, 1}n → R (not
necessarily nonnegative), Theorem 5.1 implies Var ( f (X)) ≤ E( f ) and therefore it is
stronger than the Efron–Stein inequality (for the binary hypercube).

Proof The key to the proof is the sub-additivity property of entropy derived in
Theorem 4.10. This property implies that, writing Z = f (X),

Ent(Z2) ≤ E

[
n∑
i=1

Ent(i)(Z2)

]

where Ent(i)(Z2) = E(i)[Z2 log(Z2)] – E(i)[Z2] log(E(i)[Z2]). (Recall that E(i) de-
notes conditional expectation conditioned on X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn).)
Therefore, it suffices to show that for all i = 1, . . . , n,

Ent(i)(Z2) ≤ 1
2
E(i)

[(
f (X) – f

(
X(i)

))2]
. (5.1)

Given any fixed realization of X(i), Z can take two different values with equal probabil-
ity. Call these values a and b. Then the desired inequality (5.1) takes the form

a2

2
log a2 +

b2

2
log b2 –

a2 + b2

2
log

a2 + b2

2
≤ 1

2
(a – b)2.

Thus, it remains to prove that this elementary inequality holds for any a, b ∈ R. As
(|a| – |b|)2 ≤ (a – b)2, we may assume, without loss of generality, that both a and b
are nonnegative. By symmetry, we may also assume that a ≥ b. For any fixed value of
b ≥ 0, define the function

h(a) =
a2

2
log a2 +

b2

2
log b2 –

a2 + b2

2
log

a2 + b2

2
–
1
2
(a – b)2

for a ∈ [b,∞). Since h(b) = 0, it suffices to check that h′(b) = 0 and that h is concave
on [b,∞). However, elementary calculus shows that
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h′(a) = a log
2a2

a2 + b2
– (a – b)

from which h′(b) = 0 is clear, while using log x – x ≤ –1,

h′′(a) = 1 + log
2a2

a2 + b2
–

2a2

a2 + b2
≤ 0.

�

Theorem 5.1 is possibly the simplest in the family of logarithmic Sobolev inequalities. It
is outside of the scope of this book to offer a general account of these inequalities and we
even avoid the general definition of what a logarithmic Sobolev inequality is. We merely
mention a few of them that are important for our purposes. The obvious next step after
having Theorem 5.1 is to ask what happens if the distribution of X is not uniform but
rather a product of i.i.d. Bernoulli distributions with parameter different from 1/2. This is
the setup we consider in the remaining part of this section. More precisely, we still con-
sider functions f : {–1, 1}n → R defined on the binary hypercube, but we now assume
that the components of the random vector X = (X1, . . . ,Xn) ∈ {–1, 1}n are independ-
ent, identically distributed random bits with distribution P{Xi = 1} = 1 – P{Xi = –1} = p
where p ∈ [0, 1]. With the same notation as before, we now have

E( f ) = 1
2
E

[
n∑
i=1

(
f (X) – f

(
X̃(i)

))2]

= p(1 – p)E

[
n∑
i=1

(
f (X) – f

(
X(i)

))2]
.

Then Theorem 5.1 may be generalized as follows to include the case of asymmetric
Bernoulli distributions.

Theorem 5.2 For any function f : {–1, 1}n → R,

Ent( f 2) ≤ c(p)E( f )

where

c(p) =
1

1 – 2p
log

1 – p
p

.

It is easy to see that limp→1/2 c(p) = 2, thus recovering the case of the symmetric distribu-
tion. InChapter 9wewill see several interesting applications of this inequality. The function
c(p) is plotted in Fig. 5.1.

Theorem 5.2 is a special case of a more general result that we prove in Section 14.3, but
the reader may attempt a direct proof (see Exercise 5.4).
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Figure 5.1 The constant c(p) in the logarithmic Sobolev inequality of Theorem 5.2 for asymmetric

Bernoulli distributions

5.2 Herbst’s Argument: Concentration on the Hypercube

Simple as it is, the logarithmic Sobolev inequality of Theorem 5.1 has many interesting
consequences. The most important from the point of view of this book is an exponential
concentration inequality for functions defined on the binary hypercube. This is the first and
simplest of a series of exponential inequalities which we expose. Many of them are based on
generalizations and modifications of the argument presented here.

We consider an arbitrary function f : {–1, 1}n → R defined on the binary hypercube.
Let X = (X1, . . . ,Xn) be a uniformly distributed random vector in {–1, 1}n. We are inter-
ested in the concentration properties of the random variable Z = f (X).

The following argument, attributed to Herbst, provides an exponential concentration
inequality for Z. The main trick is to use the logarithmic Sobolev inequality for the nonneg-
ative function g(x) = eλf (x)/2 where λ ∈ R is a parameter whose value we optimize later.
Then the entropy of g2 becomes

Ent(g2) = Ent
(
eλf
)
= λE

[
ZeλZ

]
– EeλZ logEeλZ.

The key observation is that if we introduce F(λ) = EeλZ for the moment generating func-
tion of Z, its derivative is F′(λ) = E

[
ZeλZ

]
, and therefore the expression above may be

written as

Ent(g2) = λF′(λ) – F(λ) log F(λ).
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The idea of Herbst’s argument is that by bounding Ent( g2) using the logarithmic Sobolev
inequality of Theorem 5.1, a differential inequality for F(λ) is achieved. By solving the dif-
ferential inequality we obtain an upper bound for the moment-generating function which,
in turn,may be converted into an exponential tail inequality byCramér–Chernoff bounding
(see Section 2.2).

By Theorem 5.1, we have

Ent(g2) ≤ 1
2

n∑
i=1

E

[(
eλf (X)/2 – eλf

(
X(i)

)/
2
)2
]

=
n∑
i=1

E

[(
eλf (X)/2 – eλf

(
X(i)

)/
2
)2

+

]

where we used the fact that X and X(i) have the same distribution.
By convexity of the exponential function, for any real numbers z > y, ez/2 – ey/2 ≤

(z – y)ez/2/2, so we have

Ent(g2) ≤ λ2

4

n∑
i=1

E
[(

f (X) – f
(
X(i)

))2
+
eλf (X)

]

=
λ2

4
E

[
eλf (X)

n∑
i=1

(
f (X) – f

(
X(i)

))2
+

]
.

Recalling that for any x = (x1, . . . , xn) ∈ {–1, 1}n we denote by x(i) the vector
(x1, . . . , xi–1, –xi, xi+1, . . . , xn), and introducing the quantity

v = max
x∈{–1,1}n

n∑
i=1

(
f (x) – f

(
x(i)
))2

+
,

we obtain

Ent(eλf ) ≤ vλ2

4
Eeλf (X).

Expressing the obtained inequality in terms of the moment-generating function F, we have

λF′(λ) – F(λ) log F(λ) ≤ vλ2

4
F(λ).

This is the promised differential inequality. To solve it, divide both sides by the positive
number λ2F(λ). Defining G(λ) = log F(λ), we observe that the left-hand side is just the
derivative ofG(λ)/λ. Thus, we obtain the inequality
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(
G(λ)

λ

)′
≤ v

4
.

By l’Hospital’s rule we note that limλ→0 G(λ)/λ = F′(0)/F(0) = EZ. If λ > 0, by integrat-
ing the inequality between 0 and λ, we getG(λ)/λ ≤ EZ + λv/4, or in other words,

F(λ) ≤ eλEZ+λ2v/4.

Finally, by Markov’s inequality,

P {Z > EZ + t} ≤ inf
λ>0

F(λ)e–λEZ–λt ≤ inf
λ>0

eλ
2v/4–λt = e–t

2/v

where λ = 2t/vminimizes the obtained upper bound. Similarly, if λ < 0, we may integrate
the obtained upper bound for the derivative ofG(λ)/λ between –λ and 0 to obtain

F(λ) ≤ eλEZ+λ2v/4

which implies the left-tail inequality

P {Z < EZ – t} ≤ inf
λ<0

F(λ)e–λEZ+λt ≤ inf
λ<0

eλ
2v/4+λt = e–t

2/v.

The following theorem summarizes what we have just proved.

Theorem 5.3 Let f : {–1, 1}n → R and assume that X is uniformly distributed on {–1, 1}n.
Let v > 0 be such that

n∑
i=1

(
f (x) – f

(
x(i)
))2

+
≤ v

for all x ∈ {–1, 1}n. Then the random variable Z = f (X) satisfies, for all t > 0,

P {Z > EZ + t} ≤ e–t
2/v and P {Z < EZ – t} ≤ e–t

2/v.

Recall that by the Efron–Stein inequality, Var (Z) ≤ v/2. The theorem states much
more: tail probabilities decrease similarly to the tail probabilities of a Gaussian random vari-
able with variance v/2. The price we pay for such an improved inequality is that a point-
wise control of

∑n
i=1(f (x) – f (x

(i)))2+ is required, while to bound the variance it suffices
to keep its expected value under control. Recall that in Section 3.6, using the Efron–Stein
estimate, we could derive the weaker exponential bound P {Z > EZ + t} ≤ 2e–t/

√
v. In

Exercise 5.5 we describe a variant of Theorem 5.3 that allows the recovery of Hoeffding’s
inequality (with the right constant) in the special case of symmetric binomial distributions.

As we already mentioned, this is the first in a series of exponential inequalities that we
prove in this book. It will be generalized and strengthened in several ways. For example,
in Section 6 we show that this inequality holds for all functions of independent random
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variables, not only for those defined on the binary hypercube. However, the skeleton of sev-
eral proofs to come is similar to the one of Theorem 5.3: a logarithmic Sobolev inequality
(or one of its modifications) is used for the random variable eλZ which leads to a differen-
tial inequality involving the moment generating function. Once the differential inequality
is solved, the Cramér–Chernoff bound yields a concentration inequality. (See Exercise 5.6
for some simple extensions.)

5.3 AGaussian Logarithmic Sobolev Inequality

In this section we use the logarithmic Sobolev inequality for the balanced Bernoulli distri-
bution (Theorem 5.1) to derive an analog result under the canonical Gaussian distribution
inRn. Even though the logarithmic Sobolev inequalities for the binary hypercube are inter-
esting in their own right, at the inception of the theory, they were merely considered as
intermediate results on the way to proving the Gaussian logarithmic Sobolev inequality and
a series of related results.

Theorem 5.4 (GAUSSIAN LOGARITHMIC SOBOLEV INEQUALITY) Let X=(X1, . . . ,Xn)
be a vector of n independent standard normal random variables and let f : Rn → R be a
continuously differentiable function. Then

Ent
(
f 2
) ≤ 2E

[∥∥∇f (X)
∥∥2].

Note that the Gaussian logarithmic Sobolev inequality is an improvement on the
Gaussian Poincaré inequality (see Exercise 5.2). The proof is based on Theorem 5.1 and
follows the same pattern as the proof of the Gaussian Poincaré inequality in Section 3.7.

Proof We first prove the theorem for n = 1, that is, when f : R → R is a continuously dif-
ferentiable function on the real line and X is a standard normal random variable. If
E
[
f ′(X)2

]
= ∞, there is nothing to prove, so assume E

[
f ′(X)2

]
< ∞. By a standard

density argument, it suffices to prove the theorem for twice differentiable functions
with bounded support (Exercise 5.12).

Let ε1, ε2, . . . be independent Rademacher random variables. Recall from the proof
of the Gaussian Poincaré inequality (Theorem 3.20) that

lim
n→∞E

⎡⎣ n∑
j=1

∣∣∣∣∣ f
(

1√
n

n∑
i=1

εi

)
– f

(
1√
n

n∑
i=1

εi –
2εj√
n

)∣∣∣∣∣
2
⎤⎦ = 4E

[
f ′(X)2

]
.

On the other hand, for any continuous uniformly bounded function f , by the central
limit theorem, we have

lim
n→∞Ent

[
f 2
(

1√
n

n∑
i=1

εi

)]
= Ent

[
f (X)2

]
.
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The proof is then completed by invoking the logarithmic Sobolev inequality for
balanced Bernoulli random variables (Theorem 5.1) which asserts that, for each n,

Ent

[
f 2
(

1√
n

n∑
i=1

εi

)]

≤ 1
2
E

⎡⎣ n∑
j=1

∣∣∣∣∣ f
(

1√
n

n∑
i=1

εi

)
– f

(
1√
n

n∑
i=1

εi –
2εj√
n

)∣∣∣∣∣
2
⎤⎦.

The extension of the result to dimension n ≥ 1 follows easily from the sub-additivity
of entropy seen in Theorem 4.22 which states that

Ent
(
f 2
) ≤ n∑

i=1

E
[
E(i) [ f (X)2 log f (X)2

]
– E(i) [ f (X)2] logE(i) [ f (X)2]]

where E(i) denotes integration with respect to the i-th variable Xi only. The result for
n = 1 proved above implies that

E(i) [ f (X)2 log f (X)2
]
– E(i) [ f (X)2] logE(i) [ f (X)2] ≤ 2E(i) [(∂i f (X))2].

Since ‖∇f (X)‖2 =∑n
i=1(∂i f (X))

2, the proof is complete. �

5.4 Gaussian Concentration:
The Tsirelson–Ibragimov–Sudakov Inequality

In the same way that Theorem 5.1 led to exponential concentration inequalities for
functions on the binary hypercube via Herbst’s argument, if we start from the Gaussian log-
arithmic Sobolev inequality, the same proof leads to exponential tail inequalities for smooth
functions of independent Gaussian random variables. The result is the following classical
Gaussian concentration inequality.

Theorem 5.5 Let X = (X1, . . . ,Xn) be a vector of n independent standard normal random
variables. Let f : Rn → R denote an L-Lipschitz function, that is, there exists a constant
L > 0 such that for all x, y ∈ Rn,

| f (x) – f (y)| ≤ L‖x – y‖.
Then, for all λ ∈ R,

logEeλ( f (X)–E f (X)) ≤ λ2

2
L2.
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Proof By a standard density argument we may assume that f is differentiable with gradi-
ent uniformly bounded by L. We may also assume, without loss of generality, that
Ef (X) = 0. The argument is the same as that given in Section 5.2, except that Theorem
5.4 is used instead of Theorem 5.1. Using the Gaussian logarithmic Sobolev inequality
for the function eλf/2, we obtain

Ent
(
eλf
) ≤ 2E

∥∥∥∇eλf (X)/2
∥∥∥2

=
λ2

2
E
[
eλf (X)‖∇f (X)‖2

]
≤ λ2L2

2
Eeλf (X).

Writing F(λ) = Eeλf (X), we obtain the differential inequality

λF′(λ) – F(λ) log F(λ) ≤ λ2L2

2
F(λ)

which can be solved exactly as in Section 5.2 to obtain log F(λ) ≤ λ2L2/2, as
desired. �

The sub-Gaussian bound obtained for themoment-generating function of course implies
an exponential tail inequality in the standard way by Markov’s inequality. More precisely,
we have derived the following.

Theorem 5.6 (GAUSSIAN CONCENTRATION INEQUALITY) Let X = (X1, . . . ,Xn) be a
vector of n independent standard normal random variables. Let f : Rn → R denote an
L-Lipschitz function. Then, for all t > 0,

P
{
f (X) – Ef (X) ≥ t

} ≤ e–t
2/(2L2).

An important feature of the theorem is that the right-hand side does not depend on the
dimension n. This inequality has served as a benchmark for the development of concentra-
tion inequalities during the last three decades. An important and prototypical application is
described in the following example.

Example 5.7 (NORM OF A GAUSSIAN VECTOR) Let X = (X1, . . . ,Xn) be a jointly
Gaussian vector with zero expectation and covariance matrix �. Let p ≥ 1 and con-
sider the real-valued random variable defined by the p-norm of X, that is,

Z = ‖X‖p =
(

n∑
i=1

|Xi|p
)1/p

.

Since � is positive semidefinite, there exists an n× n matrix A satisfying ATA = �.
Then the Gaussian vector X is distributed as AY where Y = (Y1, . . . , Yn) is distributed
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according to the canonical Gaussian distribution, that is, the components ofY are inde-
pendent standard normal random variables. Then f (y) = ‖Ay‖p is a Lipschitz function
fromRn toRwith Lipschitz constant L equal to the operator norm of Amapping �2 to
�p, that is,

L = ‖A‖�2→�p

def= sup
y∈Rn:‖y‖2=1

‖Ay‖p.

Then by Theorems 3.20 and 5.6, Var (Z) ≤ L2 and for all t > 0, P{|Z – EZ| ≥ t} ≤
2e–t2/(2L2).

5.5 A Concentration Inequality for Suprema
of Gaussian Processes

We illustrate the Gaussian concentration inequality of Theorem 5.6 by showing how it
implies, in a simple way, a concentration inequality for the supremum of a Gaussian pro-
cess. A key feature of the Gaussian concentration inequality is that the upper bound does
not depend on the dimension n. This allows us to extend it easily to an infinite-dimensional
setting which is described next.

Let T be a metric space and let (Xt)t∈T be a Gaussian process indexed by T . (This
means simply that a random variable Xt is assigned to every t ∈ T and for any finite col-
lection {t1, . . . , tn} ⊂ T , the vector (Xt1 . . .Xtn) has a jointly Gaussian distribution with
mean zero.) In addition, we assume that T is totally bounded (i.e. for every t > 0 it can be
covered by finitely many balls of radius t) and that the Gaussian process is almost surely
continuous, that is, with probability 1, Xt is a continuous function of t.

Theorem 5.8 Let (Xt)t∈T be an almost surely continuous centered Gaussian process indexed
by a totally bounded set T . If

σ 2 = sup
t∈T

E
[
X2
t
]
,

then Z = supt∈T Xt satisfies Var (Z) ≤ σ 2, and for all u > 0,

P {Z – EZ ≥ u} ≤ e–u
2/(2σ 2)

and

P {EZ – Z ≥ u} ≤ e–u
2/(2σ 2).

Proof We assume that T is a finite set. The extension to arbitrary totally bounded T is
based on a separability argument and monotone convergence, whose details are left to
the reader (see Exercise 5.14).Wemay assume, for simplicity, thatT = {1, . . . , n}. Let
� be the covariance matrix of the centered Gaussian vector X = (X1, . . . ,Xn). Denote
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by A the square root of the positive semidefinite matrix �. If Y = (Y1, . . . , Yn) is a
vector of independent standard normal random variables, then

f (Y) = max
i=1,...,n

(AY)i

has the same distribution as maxi=1,...,n Xi. Hence, we can apply the Gaussian concen-
tration inequality by bounding the Lipschitz constant of f . By the Cauchy–Schwarz
inequality, for all u, v ∈ Rn and i = 1, . . . , n,

|(Au)i – (Av)i| =

∣∣∣∣∣∣
∑
j

Ai,j
(
uj – vj

)∣∣∣∣∣∣ ≤
⎛⎝∑

j

A2
i,j

⎞⎠1/2

‖u – v‖ .

Since
∑

j A
2
i,j = Var (Xi), we get

|f (u) – f (v)| ≤ max
i=1,...,n

|(Au)i – (Av)i| ≤ σ ‖u – v‖ .

Therefore, f is Lipschitz with constant σ and the tail bounds follow from the Gaussian
concentration inequality. The variance bound follows from the Gaussian Poincaré
inequality. �

Exercise 5.37 describes an example where Theorem 5.8 is not tight.

5.6 Gaussian RandomProjections

In this section we return to the Johnson–Lindenstrauss problem studied in Section 2.9.
Recall that we showed that if A is a finite subset of RD with cardinality n, and we defined
the random projection W : RD → Rd by assigning, to each α = (α1, . . . ,αD) ∈ RD, the
vector

W(α) =
(

1√
d
Wi(α)

)d

i=1

with

Wi(α) =
D∑
j=1

αjXi,j

where the Xi,j are sub-Gaussian random variables with zero mean and unit variance, then,
with high probability,W is an ε-isometry onA provided that d ≥ κε–2 log n for an absolute
constant κ .
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The purpose of the present section is to generalize this result to the case when A is not
necessarily a finite set. We concentrate on the case where the Xi,j are i.i.d. standard normal
random variables. This allows us to use the Gaussian logarithmic Sobolev inequality which,
together with amodification ofHerbst’s argument (see Section 5.2), serves as ourmain tool
to improve on the crude bounds established in Section 2.9.

Our goal is to introduce a sharper measure for the complexity of the set A than its
cardinality. This is interesting even if A is a finite set and allows us to extend the Johnson–
Lindenstrauss lemma to possibly infinite sets A. As in Section 2.9, the results may be
generalized in a straightforwardway to the casewhenA is a subset of a generalHilbert space,
but to avoid technicalities, we assume A ⊂ RD for some finiteD. As in Section 2.9, we set

T =
{

a – a′

‖a – a′‖ , (a, a
′) ∈ A× Awith a �= a′

}
.

Recall that sinceW is linear, for every α ∈ T, E‖W(α)‖2 = 1 andW is an ε-isometry on A
if and only if

sup
α∈T

∣∣∣∥∥W(α)
∥∥2 – 1∣∣∣ ≤ ε.

A way to guarantee that this happens with large probability is to show that the expected
value of the random variable supα∈T

∣∣∣∥∥W(α)
∥∥2 – 1∣∣∣ is significantly less than ε and that this

random variable is highly concentrated around its mean. In this section we address the issue
of concentration. In Section 13.6 we return to the problem and show techniques to bound
the expected value of the supremum above in terms of the “size” of the set T, measured by
the so-called metric entropy.

When one considers a supremum of possibly uncountably many random vari-
ables, some care should be taken to ensure that the supremum is measurable.
Luckily, measurability is guaranteed here since W is continuous on the totally
bounded set T. Hence, there exists an at most countable subset T′ ⊂ T such that
supα∈T

∣∣∣∥∥W(α)
∥∥2 – 1∣∣∣ = supα∈T′

∣∣∣∥∥W(α)
∥∥2 – 1∣∣∣which ismeasurable. The following con-

centration inequality is the key to the main result of this section.

Theorem 5.9 Define Z by either

Z = d sup
α∈T

∥∥W(α)
∥∥2 or Z = d inf

α∈T
∥∥W(α)

∥∥2 .
Then, for all t > 0,

P
{
Z – EZ ≥ 2

√
2tEZ + 2t

}
≤ e–t

and for all t > 1/2,

P
{
Z – EZ ≤ –2

√
2tEZ

}
≤ e–t .
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Proof First observe that it suffices to prove the statement when T is a finite set. This is
because, as observed above, without loss of generality, we may assume that T is a
countable set. However, the supremum may be written as the limit of a sequence of
suprema taken over finite subsets. Once the inequalities stated in the theorem are
proved for finite setsT, themonotone convergence theorem implies that they also hold
for countable sets T. So assume that T is a finite set.

The proof is based on the Gaussian concentration inequality (Theorem 5.6).
In order to apply it, we write Z as a function of the vector of d× D independ-
ent standard normal random variables X = (Xi,j)i=1,...,d,j=1,...,D. To this end, write
x = (xi,j)i=1,...,d,j=1,...,D ∈ RdD and define the function f : RdD → R either by

f (x) = sup
α∈T

d∑
i=1

⎛⎝ D∑
j=1

αjxi,j

⎞⎠2

or by

f (x) = inf
α∈T

d∑
i=1

⎛⎝ D∑
j=1

αjxi,j

⎞⎠2

.

Thus,Z = f (X). The crucial property is that
√
f is 1-Lipschitz. Hence, by the Gaussian

concentration inequality,

P
{
Z ≥ EZ + 2

√
2tEZ + 2t

}
≤ P

{
Z ≥

(
E
√
Z
)2

+ 2
√
2tE

√
Z + 2t

}
≤ P

{√
Z ≥ E

√
Z +

√
2t
}

≤ e–t .

Meanwhile, by the Gaussian Poincaré inequality, we have

Var
(√

Z
)
= EZ –

(
E
√
Z
)2 ≤ 1,

and thus, invoking again the Gaussian concentration inequality, for t > 1/2,

P
{
Z – EZ ≤ –2

√
2tEZ

}
≤ P

{
Z ≤ EZ – 1 – 2

√
2tEZ + 2t

}
≤ P

{
Z ≤

(
E
√
Z
)2

– 2
√
2tE

√
Z + 2t

}
≤ P

{√
Z ≤ E

√
Z –

√
2t
}

≤ e–t . �
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Now we are ready to use Theorem 5.9 to derive a generalized version of the Johnson–
Lindenstrauss lemma. Introducing the random variables

Z = d sup
α∈T

∥∥W(α)
∥∥2 and Z′ = d inf

α∈T
∥∥W(α)

∥∥2,
we have

V def= sup
α∈T

(∥∥W(α)
∥∥2 – 1) =

Z
d
– 1

and

V ′ def= sup
α∈T

(
–
∥∥W(α)

∥∥2 + 1
)
= –

Z′

d
+ 1.

Now, for any t > 1/2,with a double application ofTheorem5.9, we obtain, with probability
at least 1 – 2e–t ,

sup
α∈T

∣∣∣∥∥W(α)
∥∥2 – 1∣∣∣ = max(V ,V ′) ≤ max(EV ,EV ′) + 2

√
2(1 + EV)t

d
+
2t
d
.

The quantity � = dmax (EV ,EV ′)2 may be regarded as a measure of “complexity” of the
set T (or of the set A). Using this notation, the previous inequality implies

sup
α∈T

∣∣∣∥∥W(α)
∥∥2 – 1∣∣∣ ≤ 2

√
�

d
+ 2

√
2t
d
+
4t
d
,

which holdswith probability at least 1 – 2e–t . As a consequence of this and some straightfor-
ward computation we derive the following structural result which provides a fairly general
answer to the Johnson–Lindenstrauss problem in the Gaussian case.

Theorem 5.10 Consider the random projection W : RD → Rd based on i.i.d. standard
normal variables Xi,j, i = 1, . . . , d, j = 1, . . . ,D and let A ⊂ Rd. If

T =
{

a – a′

‖a – a′‖ , (a, a
′) ∈ A× A with a �= a′

}
and

� = dmax
(
E sup

α∈T

(∥∥W(α)
∥∥2 – 1) ,E sup

α∈T

(
–
∥∥W(α)

∥∥2 + 1
))2

,

then there exists an absolute constant κ (κ = 20works) such that, for every ε, δ ∈ (0, 1), if
d ≥ κ (� + log (2/δ)) ε–2, W is an ε-isometry on A, with probability larger than 1 – δ.
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The main message of the theorem is that as long as d is larger than 20(� + 1)/ε2, with
positive probability,W is an ε-isometry on A and therefore there exists a linear embedding
of A inRd that is an ε-isometry. The key quantity here is� which, in a sense, measures the
richness of the setA. Onemay bound� in terms of metric entropies of the setT. We return
to this problem in Section 13.6. Here we merely point out that if A is a finite set, one may
recover Theorem 2.13. Indeed, since each variable d supα∈T

∥∥W(α)
∥∥2 follows a chi-square

distribution with d degrees of freedom, the inequality obtained in Example 2.7 in Chapter 2
implies that

� ≤ 4 logN

(
1 +

√
logN
d

)2

,

where N ≤ (n
2

)
is the cardinality of the set T. We may assume that κ ≥ 20

(otherwise we change κ to max(κ , 20) and Theorem 5.10 still holds). Assuming
that d ≥ 10κε–2 log(n/

√
δ) ≥ 100 logN, we derive that � ≤ 4(1.1)2 logN ≤

10 log n – 4 log 2 and therefore the condition d ≥ κ(D + log(2/δ))ε–2 is satisfied
whenever d ≥ 10κε–2 log

(
n/
√

δ
)
. This means that the conclusion of Theorem 5.10 holds

provided that d ≥ 10κε–2 log
(
n/
√

δ
)
. In other words, we recover Theorem 2.13 up to the

absolute constant involved in the constraint on the dimension d.

5.7 A Performance Bound for the Lasso

Numerous applications for concentration inequalities have been found in mathematical
statistics and statistical learning theory. In this section we describe an application of the
Gaussian concentration inequality to a general model selection problem and show how it
can be used in the analysis of one of the popular methods of regression function estimation,
the so-called LASSO.

First, we describe the generalized linear Gaussian model we work with. To this end, we
need the notion of an isonormal Gaussian process. Let H be a separable Hilbert space and
let (W(t))t∈H be a centered Gaussian process on H. The process is called isonormal if its
covariance is given by E

[
W(t)W(u)

]
= 〈t, u〉 for all t, u ∈ Hwhere 〈t, u〉 denotes the inner

product of t and u. In our generalized linear Gaussian model, one observes, for all t ∈ H,

Y(t) = 〈s, t〉 + εW(t), (5.2)

where ε > 0 is a fixed parameter andW is an isonormal process.
The statistical problem we consider in this section is as follows: upon observing the pro-

cess Y(t), t ∈ H, find, or at least approximate, the element s ∈ H generating Y(t) according
to (5.2).

This framework is convenient to cover both finite-dimensional linear models and the
infinite-dimensional white noise model as described in the following examples.
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Example 5.11 (CLASSICAL LINEAR GAUSSIAN REGRESSION MODEL) In the classical
Gaussian linear regression model, a random vector Y = (Y1, . . . , Yn) is observed,
given by

Yj = sj + σXj.

X = (X, . . . ,Xn) is a vector of independent standard normal random variables, σ > 0,
and s = (s1, . . . , sn) ∈ Rd is a fixed unknown vector. Setting

W(t) =
√
n 〈X, t〉

with the scalar product 〈u, v〉 = (1/n)
∑n

j=1 ujvj, we see thatW is an isonormal process
onRn and that Y(t) = 〈Y , t〉 satisfies (5.2) with ε = σ/

√
n.

Example 5.12 (WHITE NOISE MODEL) In this case a realization of the stochastic process
ζ (x) for x ∈ [0, 1] is observed, given by the stochastic differential equation

dζ (x) = s(x)dx + εdB(x) with ζ (0) = 0

where B is a standard Brownian motion, s is a square-integrable function, and ε > 0. If
we define W(t) =

∫ 1
0 t(x)dB(x) for every square-integrable function t ∈ L2 ([0, 1]),

thenW is indeed an isonormal process on H = L2 ([0, 1]) and Y(t) =
∫ 1
0 t(x)dζ (x)

satisfies the definition (5.2), provided that H is equipped with its usual scalar product
〈s, t〉 = ∫ 1

0 s(x)t(x)dx. Typically, s is a signal and dζ (x) represents the noisy signal
received at time x. This framework easily extends to a d-dimensional setting if one
considers a multivariate Brownian sheet B on [0, 1]d and takesH = L2

(
[0, 1]d

)
.

Example 5.13 (FIXED DESIGN GAUSSIAN REGRESSION) The model of fixed-design
Gaussian regression is a special case of the classical Gaussian linear model for which
sj = s(j/n), j = 1, . . . , n, where s : [0, 1] → R is a fixed unknown function. The
observed values Yj represent the “noisy” version of the “signal” s observed at “time”
j/n. It may be considered as a discretized version of the white noise model. Indeed, if
one observes ζ (x), x ∈ [0, 1] such that

dζ (x) = s(x)dx + εdB(x)

only at the points j/n for j = 1 . . . , n, then with σ = ε
√
n and

Xj =
√
n (B (j/n) – B ((j – 1) /n)) for all j ∈ [1, n] ,

the noisy signal at time j/n is

Yj = n (ζ (j/n) – ζ ((j – 1)/n)) = n
∫ j/n

(j–1)/n
s(x)dx + σXj.

Since X1, . . . ,Xn are independent standard normal, we indeed obtain the fixed
design Gaussian regression model with sj = s(n)(j/n) where s(n)(x) = n

∫ j/n
(j–1)/n s (y) dy

whenever x ∈ [(j – 1) /n, j/n). s(n) is a piecewise constant approximation of s.
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Next we describe a general way of addressing the statistical problem.
A model is a closed and convex set S ⊂ H. If one wants to approximate s ∈ H by an ele-

ment of the model S, it makes sense to choose the best approximating point of s in S by
minimizing ‖t – s‖2 or, equivalently, –2 〈s, t〉 + ‖t‖2 over t ∈ S. However, s is unknown,
so it may be necessary to choose its “noisy” analog, the least squares estimator defined as
a minimizer of the least squares criterion γ (t) = –2Y(t) + ‖t‖2 with respect to t ∈ S.

Such a minimizer may not exist so it may be necessary to resort to approximate min-
imization (as in Theorem 5.14 below). For now assume for simplicity that a least squares
estimator exists and denote it by ŝ. The quality of the estimate ŝ (and the model S) is
measured by the quadratic risk E

[ ‖ŝ – s‖2 ].
The problem of model selection is to select a model from a collection such that the least

squares estimator has a quadratic risk as small as possible. To describe the problem inmath-
ematical terms, consider a finite or countable family of models {Sm : m ∈ M} where each
Sm is a closed and convex subset of H. For each m ∈ M, we denote by ŝm ∈ Sm the least
squares estimator corresponding tomodel Sm. Amodel selection procedure uses the data to
select a value m̂ ∈ M and chooses ŝm̂ as the final estimator. Ideally, the risk of the resulting
estimator E

[‖ŝm̂ – s‖2] is as close as possible to the minimal risk infm∈M E
[‖ŝm – s‖2].

A widely used principle for model selection is penalized risk minimization. In the context
of this section, itmay be defined as follows. Supposing that a nonnegative number pen(m) is
assigned to each modelm ∈ M, these are the so-called penalties. Then one selects m̂ ∈ M
minimizing

γ (ŝm) + pen(m)

overm ∈ M.
It is outside of the scope of this book to discuss how such a penalty function should be

chosen. We merely present the following general bound which suggests some guidelines.

Theorem 5.14 Let {Sm}m∈M be a countable collection of convex and compact subsets of H.
Assume the existence of an almost surely continuous version of W on each set Sm. Define, for
any m ∈ M,

�m = E sup
t∈Sm

W(t)

and consider weights xm > 0, m ∈ M such that∑
m∈M

e–xm def= � < ∞.

Let K > 1 and assume that for any m ∈ M,

pen(m) ≥ 2Kε
(
�m + εxm +

√
�mεxm

)
.

Given nonnegative numbers ρm, m ∈ M, define a penalized approximate least squares
estimator as any s̃ ∈ ∪m∈MSm such that
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γ (s̃) + pen (m̂) ≤ inf
m∈M

(
inf
t∈Sm

γ (t) + pen(m) + ρm

)
where m̂ = argminm∈M:s̃∈Sm pen(m). Then there is a constant C = C(K) such that for all
s ∈ H,

E
[‖s̃ – s‖2] ≤ C

[
inf

m∈M

(
inf
t∈Sm

‖s – t‖2 + pen(m) + ρm

)
+ ε2 (� + 1)

]
.

Proof For eachm ∈ M, let sm be the projection of s onto Sm, that is, the unique element of
Sm such that ‖s – sm‖ = inft∈Sm ‖s – t‖. Then, by the definition of s̃, for allm ∈ M,

γ (s̃) + pen (m̂) ≤ γ (sm) + pen(m) + ρm.

Since ‖s‖2 + γ (t) = ‖t – s‖2 – 2εW(t), this implies that

‖s̃ – s‖2 ≤ ‖s – sm‖2 + 2ε [W (s̃) –W (sm)] – pen (m̂) + pen(m) + ρm.

For all m′ ∈ M, let ym′ be a positive number whose value will be specified below and
define, for every t ∈ Sm′ ,

2wm′(t) = [‖s – sm‖ + ‖s – t‖]2 + y2m′ .

Finally, define the supremum of the weighted empirical process

Vm′ = sup
t∈Sm′

[
W(t) –W (sm)

wm′(t)

]
.

Taking these definitions into account, the previous inequality implies

‖s̃ – s‖2 ≤ ‖s – sm‖2 + 2εwm̂ (s̃)Vm̂ – pen (m̂) + pen (m) + ρm. (5.3)

The proof mostly consists of controlling the fluctuations of the random variables
Vm′ . To this end, we may use the concentration inequality for suprema of Gaussian
processes (Theorem 5.8) which ensures that, given z > 0, for allm′ ∈ M,

P
{
Vm′ ≥ EVm′ +

√
2vm′ (xm′ + z)

}
≤ e–xm′ e–z (5.4)

where

vm′ = sup
t∈Sm′

Var
(
W (t) –W (sm)

wm′(t)

)
= sup

t∈Sm′
‖t – sm‖2
w2
m′(t)

.

Since wm′(t) ≥ (‖s – sm‖ + ‖s – t‖) ym′ ≥ ‖t – sm‖ ym′ , we have vm′ ≤ y–2m′ . Therefore,
summing the inequalities (5.4) overm′ ∈ M, we obtain for every z > 0, an event �z
with P{�z} > 1 – �e–z, such that on�z, for allm′ ∈ M,
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Vm′ ≤ EVm′ + y–1m′
√
2 (xm′ + z). (5.5)

Next we bound EVm′ . We may write

EVm′ ≤ E

[
supt∈Sm′ (W(t) –W (sm′))

inft∈Sm′ wm′(t)

]
+ E

[
(W (sm′) –W (sm))+

inft∈Sm′ wm′(t)

]
. (5.6)

Since 2wm′(t) ≥ (‖sm′ – s‖ + ‖sm – s‖)2 + y2m′ ≥ ‖sm′ – sm‖2 + y2m′ for all t ∈ Sm′ , we
have 2 inft∈Sm′

[
wm′(t)

] ≥ (
y2m′ ∨ 2ym′ ‖sm′ – sm‖

)
. Hence, on the one hand, by the

definition of�m,

E

[
supt∈Sm′ (W(t) –W (sm′))

inft∈Sm′ wm′(t)

]
≤ 2y–2m′E

[
sup
t∈Sm′

(W(t) –W (sm′))

]
= 2�m′y–2m′ ,

and on the other hand,

E
[
(W (sm′) –W (sm))+

inft∈Sm′ wm′(t)

]
≤ y–1m′E

[
(W (sm′) –W (sm))+

‖sm – sm′ ‖
]
.

Now, since [W (sm′) –W (sm)] / ‖sm – sm′ ‖ is a standard Gaussian random variable,

E
[
(W (sm′) –W (sm))+

inft∈Sm′ wm′(t)

]
≤ y–1m′ (2π)–1/2

and collecting these inequalities, we obtain from (5.6), for allm′ ∈ M,

EVm′ ≤ 2�m′y–2m′ + (2π)–1/2 y–1m′ .

Hence, setting δ =
(
(4π)–1/2 +

√
z
)2
, (5.5) implies that on the event �z, for all

m′ ∈ M,

Vm′ ≤ y–1m′

[
2�m′y–1m′ +

√
2xm′ + (2π)–1/2 +

√
2z
]

or equivalently, for allm′ ∈ M,

Vm′ ≤ y–1m′

[
2�m′y–1m′ +

√
2xm′ +

√
2δ
]
.

Defining

y2m′ = 2Kε2
[(√

xm′ +
√

δ
)2

+ ε–1K–1/2�m′ +
√

δε–1K–1/2�m′

]
,

the previous bound implies that on the event�z, εVm′ ≤ K–1/2 for allm′ ∈ M, which,
in particular, implies that εVm̂ ≤ K–1/2 and therefore, by (5.3),
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‖s̃ – s‖2 ≤ ‖s – sm‖2 + 2K–1/2wm̂ (s̃) – pen (m̂) + pen(m) + ρm,

or equivalently,

‖s̃ – s‖2 ≤ ‖s – sm‖2 + K–1/2 [[‖s – sm‖ + ‖s – s̃‖]2 + y2m̂
]

– pen (m̂) + pen (m) + ρm.

Using repeatedly the elementary inequality

2ab ≤ θa2 + θ–1b2

for various values of θ > 0, we derive that on the one hand,

K–1/2y2m̂ ≤ 2Kε2
[
ε–1�m̂ + xm̂ +

√
ε–1�m̂xm̂ +

2√
K – 1

(
1
2π

+ 2z
)]

,

and on the other hand,

[‖s – sm‖ + ‖s – s̃‖]2 ≤ K1/4
(
‖s – s̃‖2 + ‖s – sm‖2

K1/4 – 1

)
.

Hence, setting A′ =
(
1 + K–1/4 (K1/4 – 1

)–1), on the event�z,

‖s̃ – s‖2 ≤ A′ ‖s – sm‖2 + K–1/4 ‖s – s̃‖2

+ 2Kε
[
�m̂ + εxm̂ +

√
ε�m̂xm̂

]
– pen (m̂)

+ pen(m) + ρm +
4Kε2√
K – 1

(
1
2π

+ 2z
)
.

This, by condition on the penalty function, implies(
K1/4 – 1
K1/4

)
‖s̃ – s‖2 ≤ A′ ‖s – sm‖2 + pen(m) + ρm

+
2Kε2√
K – 1

(
1
2π

+ 2z
)
.

Integrating this inequality with respect to z leads to the announced risk bound. �

In the rest of the section we apply the model selection theorem to the analysis of LASSO,
a popular algorithm for regression function estimation.

Let
 = {ϕ1, . . . ,ϕN} ⊂ H be a finite set of (not necessarily linearly independent) vec-
tors in H. We seek estimates of s in the form of a linear combination of the vectors in 
,
often called the dictionary.
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We may assume, without loss of generality, that ‖ϕi‖ = 1, for every i = 1, . . . ,N (oth-
erwise one may simply replace ϕi by ϕi/ ‖ϕi‖). Denote by L1 (
) the linear span of 


equipped with the �1 norm

‖t‖1 = inf

{
N∑
i=1

|βi| : β ∈ RN such that
N∑
i=1

βiϕi = t

}
.

Given a parameter r > 0 (called the regularization parameter), the LASSO estimator s̃ of s
is defined as a minimizer of

γ (t) + r ‖t‖1
over all t ∈ L1 (
). Thus, the LASSO estimator is an �1-penalized least squares estimator.
Here, we prove the following performance bound.

Theorem 5.15 Consider the isonormal model introduced in (5.2). Let s̃ be a minimizer of
γ (t) + r ‖t‖1 over t ∈ L1 (
). Assume that r ≥ 4ε

(
1 +

√
logN

)
. Then there exists an

absolute constant C ≥ 1 such that

E
[‖s̃ – s‖2] ≤ C

[
inf

t∈L1(
)

(‖s – t‖2 + r‖t‖1
)
+ rε

]
.

The theorem states that, up to a constant factor, the “noisy” LASSO behaves as well as the
deterministic LASSO. The discussion of the approximation-theoretic implications of this
result goes beyond the scope of this book. The interested reader may find pointers in the
section on bibliographical remarks below.

The proof is based on an application of Theorem 5.14. The basic idea is that LASSO can
be considered as a penalized approximate least squares estimator over a properly defined
sequence of models. The key observation that allows one to make this connection is the
simple fact that the LASSO estimator s̃ satisfies

γ (s̃) + r ‖s̃‖1 = inf
R≥0

inf‖t‖1≤R
(γ (t) + rR).

To obtain a countable collection of models, we “discretize” the family of �1 balls by defin-
ing, for all m = 1, 2, . . . , Sm =

{
t ∈ L1(
), ‖t‖1 ≤ mε

}
. We may define m̂ as the smallest

integer such that s̃ ∈ Sm̂ and notice that

γ (s̃) + rm̂ε ≤ inf
m≥1

inf
t∈Sm

(γ (t) + rmε) + rε.

This means that s̃ is equivalent to an approximate penalized least squares estimator over the
sequence of models given by the collection of �1 balls {Sm,m ≥ 1}.

Deriving Theorem 5.15 from Theorem 5.14 is now an exercise.

Proof of Theorem 5.15. Consider the �1 balls Sm = {t ∈ L1 (
) : ‖t‖1 ≤ mε} for
m = 1, 2, . . . , and choose the weights of the form xm = θm, where θ > 0 is a numerical
constant specified later. Then

∑
m≥1 e

–xm = �θ = eθ/
(
eθ – 1

)
and
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sup
t∈Sm

W(t) ≤ mε max
i=1,...,N

∣∣W (ϕi)
∣∣.

Since the variablesW (ϕi), i = 1, . . . ,N are standard normal, E supi=1,...,N
∣∣W (ϕi)

∣∣ ≤√
2 log (2N) and therefore

�m = E sup
t∈Sm

W(t) ≤ mε

√
2 log (2N) ≤ mε

(√
2 logN +

√
2 log 2

)
.

Wemay apply nowTheorem 5.14 withK = 4
√
2/5 > 1, ρm = rε, and pen(m) = rmε.

Defining θ =
(
1 –

√
log 2

)
/K, since

2Kε
(
�m + εxm +

√
�mεxm

)
≤ Kε

(
5
2
�m + 4xmε

)
≤ mε2

(
4
√
logN + 4

√
log 2 + 4Kθ

)
= 4mε2

(√
logN + 1

)
,

the constraint r ≥ 4ε
(
1 +

√
logN

)
implies that the condition of Theorem 5.14 on the

penalty function is satisfied. The risk bound of Theorem 5.14 becomes

E
[‖s̃ – s‖2] ≤ C (K)

[
inf
m≥1

(
inf

‖t‖1≤mε
‖s – t‖2 + rmε + rε

)
+ (1 + �θ ) ε2

]
≤ C (K)

[
inf

t∈L1(
)

(‖s – t‖2 + r‖t‖1
)
+ 2rε + (1 + �θ ) ε2

]
,

hence the result. �

5.8 Hypercontractivity: The Bonami–Beckner Inequality

In this section we present a powerful concentration inequality for functions defined on the
binary hypercube. This so-called hypercontractive inequality bounds higher-order moments
of Boolean polynomials in terms of lower-order moments. The result, also known as
the Bonami–Beckner inequality, has its origins in harmonic analysis and has countless
applications and generalizations. The Bonami–Beckner inequality is closely related to the
logarithmic Sobolev inequality presented in Section 5.1. In fact, the proof presented here is
based on Theorem 5.1.

In this section we consider real-valued functions f : {–1, 1}n → R. Every such function
can be expressed in a unique way as

f (x) =
∑

S⊂{1,...,n}

αSuS(x)
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where the sum is over all 2n subsets S ⊂ {1, . . . , n}, and to each set Swe assign the function

uS(x) =
∏
i∈S

xi.

(If S = ∅, we define uS ≡ 1.) The αS are real-valued coefficients. To demonstrate why
such a representation is unique, observe that if we define, for real-valued functions
f , g : {–1, 1}n → R, the inner product

〈f , g〉 = 2–n
∑

x∈{–1,1}n
f (x)g(x),

then it can be seen immediately that for any S, S′ ⊂ {1, . . . , n},

〈uS, uS′ 〉 =
{
0 if S �= S′
1 if S = S′

and therefore the uS form an orthonormal basis of the vector space of all functions
f : {–1, 1}n. This means that for all S ⊂ {1, . . . , n}, αS = 〈f , uS〉. The formula f =

∑
S αSuS

is often called the Fourier–Walsh expansion of f and the αS are the Fourier coefficients of f .

For any q ≥ 1, we define the norm ‖f‖q =
(
2–n

∑
x∈{–1,1}n |f (x)|q

)1/q
.

The main result of this section, the Bonami–Beckner inequality, can be stated in various
forms. Before stating the theorem in its full generality, we describe two of its corollaries as
these are relatively simple to formulate and are the versions that we use in this book.

Corollary 5.16 Let k be a positive integer and assume that f : {–1, 1}n → R has the form
f =

∑
S:|S|=k αSuS. Then for all 1 < p < q < ∞,

‖f‖q ≤
(
q – 1
p – 1

)k/2

‖f‖p.

A function of the form f =
∑

S:|S|=k αSuS is sometimes referred to as a homogeneous
Rademacher chaos of order k. If X = (X1, . . . ,Xn) is a vector of i.i.d. Rademacher random
variables and we define the random variable

Z = f (X) =
∑
S:|S|=k

αSuS(X),

then Corollary 5.16 states that

(
E|Z|q

)1/q ≤ (
q – 1
p – 1

)k/2 (
E|Z|p

)1/p.
Thus, higher-order moments of Z can be bounded by a constant multiple of lower-
order moments. This is an important generalization of the so-called Kahane–Khinchine
inequalities that deal with the special case when k = 1.



HY P E RCONTRACT I V I T Y : TH E BONAM I–B ECKNER I N EQUA L I T Y | 141

To state another useful formulation of the Bonami–Beckner inequality, we introduce, for
any positive number γ , an operatorTγ that maps an arbitrary function f =

∑
S⊂{1,...,n} αSuS

to another function

Tγ f =
∑

S⊂{1,...,n}

γ |S|αSuS.

For γ = 1 this is just the identity operator. For γ < 1, the Fourier coefficients correspond-
ing to a set S are shrunk by a factor that is exponential in the size of the set. For γ > 1, the
Fourier coefficients are blown up similarly.

Corollary 5.17 For any f : {–1, 1}n → R and γ ≤ 1,

‖Tγ f‖2 ≤ ‖f‖1+γ 2 .

The corollary above asserts that, considered as an operator from L1+γ 2 to L2, Tγ has

an operator norm ‖Tγ ‖op def= supf :{–1,1}n→R ‖Tγ f‖2/‖f‖1+γ 2 bounded by 1. (In fact, it
equals 1; just consider the function f ≡ 1.) As the inequality involves different norms, the
property is often called hypercontractivity. Next we formulate the general statement.

Theorem 5.18 (BONAMI–BECKNER INEQUALITY) Let 1 < p < q < ∞ and let β > 0.
Define γ =

√
β/(q – 1) and δ =

√
β/(p – 1). Then, for any function f : {–1, 1}n → R,

‖Tγ f‖q ≤ ‖Tδ f‖p.
Observe that Corollary 5.16 follows simply by taking β = 1 while Corollary 5.17 is

recovered by setting q = 2 and β = p – 1.

Proof The key idea of the proof is to define the function q(t) = βe2t + 1 for t ≥ 0. Then
the statement of the theorem becomes

‖Te–t f‖q(t) ≤ ‖Te–s f‖q(s)
where t = log

√
(q – 1)/β and s = log

√
(p – 1)/β (i.e., s < t). If X = (X1, . . . ,Xn) is

a uniformly distributed random vector on {–1, 1}n, then defining the random variable
Zt =

∑
S⊂{1,...,n} e

–t|S|αSuS(X), we may write

‖Te–t f‖q(t) =
(
E
[
|Zt|q(t)

])1/q(t)
and therefore we need to prove that for all 0 ≤ s < t,

1
q(t)

logE
[
|Zt|q(t)

]
≤ 1

q(s)
logE

[
|Zs|q(s)

]
,

that is, that (1/q(t)) logE
[
|Zt|q(t)

]
is a nonincreasing function of t ≥ 0. We do this

by induction on n. The following lemma establishes the result for the case of n = 1
variable.
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Lemma 5.19 Let X be a Rademacher random variable, let α0,α1 ∈ R be real coefficients
and let

Zt = α0 + e–t α1X.

Then (1/q(t)) logE
[
|Zt|q(t)

]
is a nonincreasing function of t ≥ 0 where q(t) = βe2t + 1

with β > 0.

Proof Note first that for s, t ≥ 0, Zt = e–(t–s)Zs + (1 – e–(t–s))EZs. Now define, for all
t ≥ 0, Yt = e–(t–s)|Zs| + (1 – e–(t–s))E|Zs|. Then, for all t ≥ s, Ys = |Zs| and |Zt| ≤ Yt
and thus,

1
q(t)

logE
[
Yq(t)
t

]
≤ 1

q(s)
logE

[
Yq(s)
s

]
�⇒ 1

q(t)
logE

[
|Zt|q(t)

]
≤ 1

q(s)
logE

[
|Zs|q(s)

]
.

In order to prove the lemma, it suffices to establish that (1/q(t)) logE[Yq(t)
t ] is a

nonincreasing function of t ≥ s. However,

Yt = e–(t–s)|α0 + e–sα1X| + (1 – e–(t–s))
|α0 + e–sα1| + |α0 – e–sα1|

2
.

If we exchange the roles of α0 and e–sα1, the distribution of Yt does not change. Thus,
without loss of generality, we may assume that α0 ≥ e–s|α1|. This means that Zt ≥ 0
for t ≥ s. Summarizing, we have shown that in order to prove the lemma, it suffices to
show that for t ≥ s, if Zt ≥ 0 then

d
dt

(
1

q(t)
logE

[
Zq(t)
t

])
≤ 0.

The derivative, by straightforward differentiation, may be written as

d
dt

(
1

q(t)
logE

[
Zq(t)
t

])
=

q′(t)
q2(t)

1

E
[
Zq(t)
t

] (–E [Zq(t)
t

]
logE

[
Zq(t)
t

]
+ E

[
Zq(t)
t logZq(t)

t

]

+
q2(t)
q′(t)

E
[
Zq(t)–1
t

dZt

dt

])
.

On the right-hand side we recognize the entropy Ent(Zq(t)
t ). Also, using the simple fact

that dZt/dt = EZt – Zt , we have
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d
dt

(
1

q(t)
logE

[
Zq(t)
t

])
=

q′(t)
q2(t)

1

E
[
Zq(t)
t

] (Ent(Zq(t)
t

)
+
q2(t)
q′(t)

E
[
Zq(t)–1
t (EZt – Zt)

])
.

Since q′(t) > 0, it suffices to show that the expression in parentheses is non-positive.
To this end, we invoke the logarithmic Sobolev inequality of Theorem 5.1. We get

Ent
(
Zq(t)
t

)
≤ E

[(
Zq(t)/2
t – Z′

t
q(t)/2

)2
+

]
with Z′

t = α0 + e–tα1X′ where X′ is a Rademacher random variable, independent of X.
In order to further bound the right-hand side, we observe that for 0 ≤ a < b,(

bq/2 – aq/2

b – a

)2

=
(

q
2(b – a)

∫ b

a
u

q
2 –1du

)2

≤ q2

4(b – a)

∫ b

a
uq–2du (by Cauchy–Schwarz)

=
q2

4(q – 1)
bq–1 – aq–1

b – a
.

Using this inequality and the identical distribution of Zt and Z′
t , we obtain

Ent
(
Zq(t)
t

)
≤ E

[(
Zq(t)/2
t – Z′

t
q(t)/2

)2
+

]
≤ q2(t)

4(q(t) – 1)
E
[(

Zq(t)–1
t – Z′

t
q(t)–1

)
(Zt – Z′

t)
]

=
q2(t)

2(q(t) – 1)
E
[
Zq(t)–1
t (Zt – Z′

t)
]

=
q2(t)

2(q(t) – 1)
E
[
Zq(t)–1
t (Zt – EZt)

]
.

Using this bound, we finally have

Ent
(
Zq(t)
t

)
+
q2(t)
q′(t)

E
[
Zq(t)–1
t (EZt – Zt)

]

≤
(

–q2(t)
2(q(t) – 1)

+
q2(t)
q′(t)

)
E
[
Zq(t)–1
t (EZt – Zt)

]
= 0

because the expression in parentheses involving q(t) equals zero. �
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With the proof of the case n = 1 completed, we proceed with the induction step to
finish the proof of Theorem 5.18. Assume that the statement of the theorem holds for
n – 1 variables. The argument is based on the general form of Minkowski’s inequal-
ity (Theorem 2.16). Recall that X = (X1, . . . ,Xn) is a uniformly distributed vector on
{–1, 1}n and Zt =

∑
S⊂{1,...,n} e

–t|S|αSuS(X). Introduce the random variables

Vt =
∑

S⊂{1,...,n},n/∈S
e–t|S|αSuS(X)

and

Wt =
∑

S⊂{1,...,n},n∈S
e–t(|S|–1)αSuS\{n}(X)

so that Zt = Vt + e–tXnWt . Write En–1 for the conditional expectation operator condi-
tioned on Xn (i.e. integration with respect to X1, . . . ,Xn–1) and E(n) for expectation
taken with respect to Xn only (i.e. conditional on X1, . . . ,Xn–1). Then(

E‖Zt‖q(t)
)1/q(t)

=
(
En–1

[
E(n)

[
‖Vt + e–tXnWt‖q(t)

]])1/q(t)
≤
(
En–1

[(
E(n)

[
‖Vt + e–sXnWt‖q(s)

])q(t)/q(s)])1/q(t)

(by Lemma 5.19)

≤
(
E(n)

[(
En–1

[
‖Vt + XnWt‖q(t)

])q(s)/q(t)])1/q(s)

(byMinkowski’s inequality; Theorem 2.16)

≤
(
E(n)

[
En–1

[
‖Vs + XnWs‖q(s)

]])1/q(s)
(by the induction hypothesis)

=
(
E
[
‖Zs‖q(s)

])1/q(s)
,

where the last inequality is a consequence of the induction hypothesis. This completes
the proof of Theorem 5.18. �

The Bonami–Beckner inequality may be extended to the case of vector-valued functions.
For example, an extended version of Corollary 5.16 states that if X = (X1, . . . ,Xn) is a vec-
tor of i.i.d. Rademacher random variables and for each S ⊂ {1, . . . , n}, αS is an element of
a normed vector space, then the random vector defined by

Z =
∑
S:|S|=k

αSuS(X)
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satisfies

(E‖Z‖q)1/q ≤
(
q – 1
p – 1

)k/2

(E‖Z‖p)1/p

where 1 < p < q and k ≤ n is a positive integer. The proof goes similarly to the case of
real-valued coefficients, only the proof of Lemma 5.19 needs to be adjusted. We leave the
details as an exercise (see Exercise 5.7).

The special case when k = 1 is a classical and thoroughly studied problem. In this
case f (x) =

∑n
i=1 bixi and the inequality above is a version of the classical Kahane–

Khinchine inequality. An especially interesting and important case is when q = 2 and p = 1.
Unfortunately, in this case the Bonami–Beckner inequality is vacuous. However, the
Bonami–Beckner inequalitymay be used to control theL2-normofZ by a constantmultiple
of the L1 norm. To this end, just observe that by the Cauchy–Schwarz inequality,

E‖Z‖3/2 ≤ √
E‖Z‖√E‖Z‖2

and therefore

(E‖Z‖2)1/2
E‖Z‖ ≤

(
(E‖Z‖2)1/2
(E‖Z‖3/2)2/3

)3

.

Thus, the Bonami–Beckner inequality implies(
E‖Z‖2)1/2 ≤ 23k/2E‖Z‖.

However, the constant 23k/2 is not optimal. For k = 1, an ancient and elementary argu-
ment shows that 23/2 may be replaced by 31/2 (see Exercise 5.8). Moreover the optimal
constant is not difficult to determine. We close this section by a short and elegant proof of
the Kahane–Khinchine inequality for q = 2 and p = 1 with the best possible constant. We
prove the result for general, vector-valued coefficients as it does not require any additional
effort.

Theorem5.20 (SZAREK’S INEQUALITY)Let b1, . . . , bn be elements of a normed vector space
and let X1, . . . ,Xn be independent Rademacher random variables. If Z = ‖∑n

i=1 biXi‖,
then √

E [Z2] ≤ √
2EZ.

Proof Let f (x)=‖∑n
i=1 biXi‖ for x = (x1, . . . , xn)∈{–1, 1}n and denote its Fourier coef-

ficients by αS = 〈f , uS〉, S⊂{1, . . . , n}. Recalling x(i) = (x1, . . . , xi–1, –xi, xi+1, . . . , xn),
define f (x) =

∑n
i=1 f (x

(i)). Since

uS(x(i)) =
{
uS(x) if i /∈ S
–uS(x) if i ∈ S,
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the Fourier coefficient of f corresponding to S ⊂ {1, . . . , n} equals αS(n – 2|S|). This
means that

〈f , f 〉 =
〈 ∑
S⊂{1,...,n}

αSuS,
∑

S⊂{1,...,n}

αS(n – 2|S|)uS

〉

=
∑

S⊂{1,...,n}

α2
S(n – 2|S|).

A key property of f is that if |S| is odd then αS = 0. This simply follows because if |S| is
odd, uS(–x) = –uS(x) and f (–x) = f (x), so αS =

∑
x∈{–1,1}n f (x)uS(x) = 0. Using this

fact implies

〈f , f 〉 =
∑

S⊂{1,...,n}

α2
S(n – 2|S|)

≤ nα2
∅ + (n – 4)

∑
S �=∅

α2
S

= 4α2
∅ + (n – 4)

∑
S⊂{1,...,n}

α2
S

= 4‖f‖21 + (n – 4)‖f‖22,
where we used the simple facts that α∅ = ‖f‖1 and that∑S⊂{1,...,n} α2

S = ‖f‖22, known
as Parseval’s identity. We compare the upper bound obtained for 〈f , f 〉 by a simple
lower bound derived as follows. Note that, for every x ∈ {–1, 1}n,

f (x) =
n∑
i=1

∥∥∥∥∥∥
n∑
j=1

bjx
(i)
j

∥∥∥∥∥∥ ≥
∥∥∥∥∥∥

n∑
i=1

n∑
j=1

bjx
(i)
j

∥∥∥∥∥∥ = (n – 2)f (x).

Thus, since f is nonnegative, 〈f , f 〉 ≥ (n – 2)‖f‖22. Comparing the upper and lower
bounds obtained for 〈f , f 〉, we get ‖f‖22 ≤ 2‖f‖21 which is precisely what we wanted
to show. �

To confirm that the constant
√
2 is the best possible, just consider the caseZ = X1 + X2.

5.9 Gaussian Hypercontractivity

The hypercontractivity property of the symmetric Bernoulli distribution given by the
Bonami–Beckner inequality also has its Gaussian analog, called Nelson’s theorem, which
we do not detail here (see, however, Exercises 5.18, 5.19, and 5.20). However, we point out
a simple consequence of the Bonami–Beckner inequality for moments of polynomials of a
Gaussian variable.
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Corollary 5.21 Let f (x) =
∑k

i=0 aix
i be a polynomial of degree k of a real variable and let X

be a standard normal random variable. Then for any q > 2,(
E
[
| f (X)|q

])1/q ≤ (q – 1)k/2
(
E
[
| f (X)|2

])1/2 .
Proof Let ε = (ε1, . . . , εn) be a vector of n i.i.d. Rademacher random variables. By the

central limit theorem, it suffices to prove that for all n,

(
E

[∣∣∣∣∣ f
(

1√
n

n∑
i=1

εi

)∣∣∣∣∣
q])1/q

≤ (q – 1)k/2
(
E

[∣∣∣∣∣ f
(

1√
n

n∑
i=1

εi

)∣∣∣∣∣
2])1/2

.

Introducing g(ε1, . . . , εn) = f
(

1√
n

∑n
i=1 εi

)
, we observe that g is a (nonhomogen-

eous) Rademacher chaos of order d, that is, g : {–1, 1}n → Rmay be expressed as

g(ε) =
∑

S⊂{1,...,n}:|S|≤k

αSuS(ε).

We may then apply the Bonami–Beckner inequality (Theorem 5.18) with β = q – 1
and p = 2 to get, with δ =

√
q – 1 > 1,

‖g‖2q ≤ ‖Tδg‖22 =
∑

S⊂{1,...,n}:|S|≤k

α2
Sδ

2|S| ≤ δ2k
∑

S⊂{1,...,n}:|S|≤k

α2
S = δ2k‖g‖22

which is exactly what we wanted to prove. �

5.10 The Largest Eigenvalue of RandomMatrices

In this section we investigate concentration properties of the largest eigenvalue of random
Hermitian matrices with Gaussian entries. This is just one example from the vast liter-
ature on tail bounds for eigenvalues of random matrices. We present it to illustrate how
the Gaussian hypercontractive inequality (Corollary 5.21) may be used to obtain powerful
results in a nontrivial example.

Recall that in Example 3.14 (see also Example 6.8) we studied the random fluctuations
of the largest eigenvalue of random symmetric matrices with independent bounded entries.
However, the Gaussian assumption used here allows us to obtain significantly sharper
results.

A complex n× n matrix H is called Hermitian if H = H∗ where H∗ is the transposed
conjugate of H (i.e. H∗

i,j = Hj,i for all 1 ≤ i, j ≤ n). The set of n× n Hermitian matrices
is denoted by Hn while the set of n× n unitary matrices is denoted by Un. The spectral
decomposition theorem for Hermitian matrices asserts that any Hermitian matrix H can
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be written as H = UDU∗ where U ∈ Un and D is a diagonal matrix with real entries. The
entries ofD are the eigenvalues ofH, denoted by λ1 ≥ λ2 ≥ . . . ≥ λn.

In this section we consider a special random matrix model, called the Gaussian unit-
ary ensemble (GUE). A random matrix H is said to belong to the GUE if H is a Hermitian
matrix whose diagonal entries (Hi,i)i≤n are independent real Gaussian variables with vari-
ance σ 2 = 1/(4n) and whose off-diagonal entries (Hi,j)1≤i<j≤n are independent complex
Gaussian random variables with independent real and imaginary parts, both with variances
σ 2/2 = 1/(8n).

The distribution of a random n× nmatrix from the GUE may be described by its density
with respect to the Lebesguemeasure overRn2 (using the straightforward one-to-onemap-
ping between the set of n× nHermitian matrices andRn2 ). This density is proportional to
exp (–‖H‖2HS/(2σ

2)). Recall that theHilbert–Schmidt norm of a complex n× nmatrix A is
defined by ‖A‖2HS =

∑
1≤i,j≤n |Ai,j|2.

Here we study the largest eigenvalue λ1(H) of a random matrix H from the GUE. One
may use Lidskii’s inequality (see Exercise 3.16) to show that λ1(H) is a Lipschitz function
of n2 independent standard Gaussian random variables with Lipschitz constant n–1/2. The
Gaussian concentration inequality (Theorem 5.6) implies that the fluctuations of λ1(H)
around its expectation are of an order of at most n–1/2, with high probabiliy. Themain focus
of this section is the following theorem. It shows that the upper tail is significantly lighter
than implied by theGaussian concentration inequality, as typical deviations are of the order
of n–2/3.

Theorem 5.22 Let Z = λ1(H) be the largest eigenvalue of a random n× n matrix H,
distributed according to the GUE. Then for all 0 ≤ t ≤ 1,

P {Z ≥ 1 + t} ≤ 1
2t1/2

e–nt
3/2
.

By a more involved analysis, one may show that the factor 1/(2t1/2) can be replaced by a
universal constant.

Note thatEZ �= 1, so Theorem 5.22 is not about deviations from themean. Nevertheless,
it follows from Wigner’s theorem (Theorem 5.23 below) that lim infn→∞ EZ ≥ 1. This,
combined with Theorem 5.22, implies that, in fact, limn→∞ EZ = 1. One may also show
that there exists a universal constant κ > 0 such that for all n, |EZ – 1| ≤ κn–2/3.

Wigner’s celebrated semi-circular law determines the asymptotic distribution of the
eigenvalues of randommatrices from the GUE. In order to stateWigner’s theorem,wedefine
the spectral measure Ln of an n× nHermitian matrixH as the discrete probability measure
on the real line that assigns weight 1/n to each eigenvalue of H. In other words, for any
function f defined overR, we let

Lnf =
1
n

n∑
i=1

f (λi).

The semi-circular density is defined, for x ∈ R, by φ(x) = (2/π)
√
1 – x21{x∈[–1,1]}.
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Theorem 5.23 (WIGNER’S THEOREM) Let Ln denote the spectral measure of a random
n× n matrix from the GUE. Then the sequence Ln converges weakly in probability, to the
semi-circular distribution. This means that for all ε > 0,

lim
n→∞P

{
sup
f∈B

|Lnf –
∫

f (x)φ(x)dx| > ε

}
= 0,

whereB denotes the set of 1-Lipschitz functions f : R → [–1, 1].

Wigner’s theoremmay be proved by solving Exercises 5.32–5.35.
In preparation for the proof of Theorem 5.22, we need to introduce the so-calledHermite

polynomials. For every k = 1, 2, . . . , the normalized Hermite polynomial of degree k is
defined by

hk(x) =
1√
k!
dkeλx–λ2/2

dλk

∣∣∣∣∣
λ=0

.

An important property of Hermite polynomials is that they form an orthonormal family in
the space of square-integrable functions under the standard Gaussian distribution. That is,
if X is a standard Gaussian random variable, then Ehi(X) = 0 for all i > 1, and

E
[
hi(X)hj(X)

]
=

{
1 if i = j
0 otherwise.

A proof of this well-known fact and some other useful properties of Hermite polynomials
are suggested in Exercise 5.22.

The proof of Theorem 5.22 starts from the determinantal description of the joint dis-
tribution of the eigenvalues as shown in the next lemma. Deriving this lemma requires a
substantial amount of work (see Exercises 5.24–5.30). Observe that with probability 1, a
randommatrix from the GUE has pairwise distinct eigenvalues.

Henceforth, let�(x1, . . . , xn) be the Vandermonde determinant defined by x1, . . . , xn:

�(x1, . . . , xn) =
∏

1≤i<j≤n

(xi – xj) = det

⎛⎜⎜⎜⎝
1 x1 x21 · · · xn–11
1 x2 x22 · · · xn–12
...
...

...
...

1 xn x2n · · · xn–1n

⎞⎟⎟⎟⎠ .

Lemma 5.24 The joint density of the eigenvalues of an n× n random matrix from the GUE at
λ1 > λ2 > · · · > λn equals∏n–1

j=0 1/j!

(2π)n/2σ n�

(
λ1

σ
, . . . ,

λn

σ

)2

exp
(
–
∑n

i=1 λ2
i

2σ 2

)
,

where σ = 1/
√
4n.
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The density of the unordered sequence (λ1, . . . , λn) ∈ Rn of eigenvalues of a random
n× nmatrix from the GUE is obtained by dividing the formula above by n!.

Starting from Lemma 5.24, the proof of Theorem 5.22 has two main steps. The first
relates expectations under the mean spectral measure with sums of Gaussian integrals. This
lemma is also used to establish Theorem 5.23.

Lemma5.25 Let H be an n× n randommatrix from the GUE and let Ln denote the (random)
spectral measure of H. For any f : R → R,

ELn f =
1
n

n–1∑
i=0

E
[
f (σX)hi(X)2

]
,

where X is a standard Gaussian random variable and σ = 1/
√
4n.

Proof As hk is of degree k and as the leading coefficient of
√
k!hk is 1, the Vandermonde

determinant may be rewritten in terms of the Hermite polynomials as

� (λ1, . . . , λn) =

⎛⎝ n–1∏
j=0

√
j!

⎞⎠ det
(
hj (λi)

)
1≤i≤n
0≤j<n

.

The determinant may also be written by summing, over the set Sn of all permutations
of {1, . . . , n}, the signed product of diagonal elements:

� (λ1, . . . , λn) =
n–1∏
j=0

√
j!
∑
τ∈Sn

sgn(τ)
n∏
i=1

hτ(i)–1 (λi)

where sgn(τ) = 1 (resp. –1) if τ is the product of an even (resp. odd) number of trans-
positions. In the sequel, τ ◦ τ ′ is the composition of permutations τ and τ ′, that is,
τ ◦ τ ′(x) = τ(τ ′(x)) and sgn(τ ◦ τ ′) = sgn(τ)sgn(τ ′).

For each i ∈ {1, . . . , n} and for any measurable function f ,

Ef (λi(H))

=
1
n!

∑
τ ,τ ′∈Sn

sgn(τ ◦ τ ′)

∫
Rn
f (λi)

n∏
j=1

hτ(j)–1

(
λj

σ

)
hτ ′(j)–1

(
λj

σ

) e–
∑n

k=1 λ2
k/(2σ

2)

(2πσ 2)n/2
dλ1 · · · dλn

=
1
n!

∑
τ ,τ ′∈Sn

sgn(τ ◦ τ ′)

∫
Rn
f (σλi)

n∏
j=1

hτ(j)–1
(
λj
)
hτ ′(j)–1

(
λj
) e–∑n

k=1 λ2
k/2

(2π)n/2
dλ1 · · · dλn.



THE L A RG E S T E I G ENVA LU E O F R ANDOM MATR I C E S | 151

For all τ , τ ′ ∈ Sn, by Fubini’s theorem,

∫
Rn
f (σλi)

n∏
j=1

hτ(j)–1(λj)hτ ′(j)–1(λj)e–
∑n

k=1 λ2
k/2dλ1 · · · dλn

=
(∫

R

f (σλi)hτ(i)–1(λi)hτ ′(i)–1(λi)e–λ
2
i /2dλi

)
×
∏
j�=i

(∫
R

hτ(j)–1(λj)hτ ′(j)–1(λj)e–λ
2
j /2dλj

)
.

By the orthogonality property of the Hermite polynomials, the last factor on the right-
hand side vanishes unless τ(j) = τ ′(j) for all j �= i, that is unless τ = τ ′. Hence,

Ef (λi(H)) =
1
n!

∑
τ∈Sn

∫
R

f (σλi)hτ(i)–1(λi)2
e–λ2

i /2√
2π

dλi

=
1
n

∫
R

f (σλi)

( n–1∑
k=0

hk(λi)2
)
e–λ2

i /2√
2π

dλi.

The lemma follows by simplifying the expansion of ELn. �

Proof of Theorem 5.22. Wemay combine Lemma 5.25 and the simple bound

1{maxi=1,...,n λi≥1+t} ≤
n∑
i=1

1{λi≥1+t},

that is, we choose f (λ) = 1{λ≥1+t} to obtain

P {Z ≥ 1 + t} ≤ nE

[
1
n

n∑
i=1

1{λi(H)≥1+t}

]

≤
n–1∑
i=0

E
[
1{X≥2

√
n(1+t)}hi(X)2

]
.

By Hölder’s inequality, for any r > 1, letting r∗ = r/(r – 1),

E
[
1{X≥2

√
n(1+t)}hi(X)2

] ≤ (
P
{
X ≥ 2

√
n(1 + t)

})1/r∗ (E[hi(X)2r])1/r
≤ e–2n(1+t)

2/r∗ ‖hi‖22r
≤ e–2n(1+t)

2/r∗(2r – 1)i ‖hi‖22
= e–2n(1+t)

2/r∗(2r – 1)i,
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where the last inequality follows from Corollary 5.21. Summing the n upper bounds,

P {Z ≥ 1 + t} ≤ e–2n(1+t)
2/r∗

n–1∑
i=0

(2r – 1)i

= e–2n(1+t)
2/r∗ (2r – 1)

n

2r – 2
.

The theorem now follows by choosing r = 1 +
√
t. �

5.11 Bibliographical Remarks

It is outside the scope of this book to offer an exhaustive account of logarithmic Sobolev
inequalities. Instead, we refer the interested reader to the excellent book of Ané et al. (2000)
for an extensive survey, with connections to other functional inequalities, Markov chains,
information theory, etc. The investigation of logarithmic Sobolev inequalities, Poincaré
inequalities and hypercontractivity was initiallymotivated by an analysis of themixing prop-
erties ofMarkov processes andMarkov chains.We refer the reader to the survey ofDiaconis
and Saloff-Coste (1998), the lecture notes by Saloff-Coste (1997), and Martinelli (1997)
for a presentation of the role of functional inequalities in that field.

The logarithmic Sobolev inequalities for the balanced Bernoulli and Gaussian distribu-
tions were first derived byGross (1975). It wasGross who determined the optimal constant
in the logarithmic Sobolev inequality for the balanced Bernoulli distribution. The case of
general Bernoulli distributions (Theorem 5.2) was clarified 20 years later by Higuchi and
Yoshida (1995) and independently by Diaconis and Saloff-Coste (1996). The proof of
Theorem 5.2 suggested in Exercise 5.4 is attributed to Bobkov, as it is presented in the lec-
ture notes by Saloff-Coste (1997) and in Ané et al. (2000, Chapter 1). The logarithmic
Sobolev constants for Bernoulli distributions can also be recovered from the more general
result of Latała and Oleszkiewicz (2000).

The argument, attributed to Herbst, to derive concentration inequalities based on log-
arithmic Sobolev inequalities appears first in Davies and Simon (1984) (see also Aida,
Masuda, and Shigekawa (1994)). The method was greatly generalized and popularized by
Ledoux (1997, 1996, 1999, 2001) (and see Chapters 6 and 12).

The story of the Kahane–Khinchine inequalities date back to Khinchine (1923),
Littlewood (1930), and Paley and Zygmund (1930), who proved it in the case of one-
dimensional coefficients with different constants. It was extended to vector-valued coef-
ficients by Kahane (1964). (For Littlewood’s argument see Exercise 5.8.) The optimal
constant

√
2 for real Rademacher sums in Theorem 5.20 was established by Szarek (1976).

It was further generalized by Haagerup (1981) for comparing any q-th moment of a
real Rademacher sum to the second moment. The optimal comparison between the first
and second moments for norms of vector valued Rademacher sums is due to Latała and
Oleszkiewicz (1994). The proof of Theorem 5.20 given here was inspired by the proof
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given by de la Penã and Giné (1999) who attribute it to Kwapień, Latała, and Oleszkiewicz
(1996). We refer to de la Penã and Giné (1999) for many related results.

Theorem 5.6 was originally proved by Tsirelson, Ibragimov, and Sudakov (1976) using
arguments different to the ones given here, based on stochastic calculus. A sharper form of
this inequality is given in Section 10.4. For a thorough account of Gaussian concentration
inequalities see Ledoux (1996).

The generalized Johnson–Lindenstrauss problem in Section 5.6 was investigated by
Klartag and Mendelson (2005) whose results essentially contain Theorem 5.10 and also
the bounds on� derived in Section 13.6.

The generalized linear Gaussian model discussed in Section 5.7 was introduced in Birgé
and Massart (2001). For a detailed account of Gaussian model selection and related prob-
lems we refer the reader to Massart (2006). The LASSO estimator was introduced by
Tibshirani (1996) and has become an important tool for high-dimensional regression prob-
lems. We refer the interested reader to Barron et al. (2008), Bickel, Ritov, and Tsybakov
(2009), Bunea, Tsybakov, and Wegkamp (2007), Candès and Tao (2005, 2007), Donoho
(2006b, 2006c), Huang, Cheang and Barron (2010), Koltchinskii (2009a, 2009b), and
van de Geer (2008) for a variety of theoretical results. Theorem 5.15 and the argument
presented here are borrowed from Massart and Meynet (2010). Related results were
obtained by Bartlett, Mendelson and Neeman (2012).

The Bonami–Beckner inequality (Theorem 5.18) is due to Bonami (1970) and Beckner
(1975). The Gaussian analog of Theorem 5.16 described in Exercises 5.18 and 5.19 is from
Nelson (1973). Gross (1975) established the equivalence between hypercontractivity and
logarithmic Sobolev inequalities in a general framework that we do not discuss here. Our
proof of the Bonami–Beckner inequality is based on some of these ideas (see again Ané et
al. (2000)) and see also Exercise 5.18 for another aspect in this connection. Starting with
an important paper by Kahn, Kalai, and Linial (1988), the Bonami–Beckner inequality has
found many interesting applications in the geometry of the binary hypercube and in the
study of threshold phenomena. Several of these applications are described in Chapter 9
(though we prove most of these results using logarithmic Sobolev inequalities).

Wishart (1928) initiated the analysis of random matrices, namely the analysis of empir-
ical covariance matrices of multivariate Gaussian samples. A survey of recent developments
in the non-asymptotic analysis of random covariance matrices can be found in Rudelson
and Vershynin (2010), and see also Section 13.4.

Nowadays, eigenvalues and singular values of randommatrices are amajor topic of study
in mathematical physics, multivariate statistics, combinatorics, and information theory, to
name but a few. The interested reader is referred to Mehta (2004) or Anderson, Guionnet,
and Zeitouni (2010) for a thorough presentation (see also Tao (2012)). Theorem 5.23
was proved by Wigner (1955) who actually proved the weak convergence of the mean
spectral measure to the semi-circular distribution. The convergence of the empirical spec-
tral measure to the semi-circular distribution has been established for many other matrix
ensembles using a variety of proof techniques (see Anderson, Guionnet, and Zeitouni
(2010)). It holds for random real symmetric Hermitian matrices with independent entries
under somemild tail assumptions on the distribution of the entries. Götze and Tikhomirov
(2003, 2005) provide upper bounds on the rate of convergence of the spectral measure
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to the semi-circular distribution. Refer also to Meckes and Meckes (2012) and references
therein for recent progress on the rate of convergence for spectral measures of a variety of
matrix ensembles.

The asymptotic distribution of the largest eigenvalue of random matrices from the
Gaussian unitary ensemble was characterized by Tracy and Widom (1994). The Tracy–
Widom asymptotics for the largest eigenvalue has been extended to other ensembles of
randommatrices, including some non-Gaussian ensembles (see Soshnikov (1999)). Erdős
and Yau (2012) survey universality issues raised by spectra of randommatrices. In particu-
lar, the Tracy–Widom asymptotics holds for ensembles of random symmetricmatrices with
Rademacher entries, suggesting that there is room for improvement in the variance bound
described in Example 3.14.

The largest eigenvalue of a random matrix from the GUE has interesting connections
outside the random matrix theory. For example, for large n, once properly centered and
standardized, the length of the longest increasing sequence in a random permutation over
{1, . . . , n} behaves like the largest eigenvalue of a random matrix distributed as the GUE
(Baik, Deift and Johansson (1999)).

The proof of Theorem 5.22 is taken from Ledoux (2003) but see also Aubrun (2005) for
an alternative approach. Using more involved arguments, Ledoux (2003) proves that the
polynomial factor in the tail bound is not necessary. The survey by Ledoux (2007) provides
an accessible account of a wide range of non-asymptotic as well as asymptotic results on
eigenvalues of randommatrices.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

5.12 EX ERC I S E S

5.1. Show that for any nonnegative random variable Z, Var (Z) ≤ Ent(Z2) (Latała and
Oleszkiewicz (2000).) Show by example that the inequality is not necessar-
ily true if Z is not required to be nonnegative. Hint: introduce, for p ∈ [1, 2),
the functional �p(Z) = E[Z2] – (E [Zp])2/p. Show that limp↑2 �(Z) = Ent(Z2)/2.
Moreover, show that�p(Z)/((1/p) – (1/2)) is nondecreasing in p.

5.2. Show that Theorem 5.1 implies that for any function f : {–1, 1}n → R,
Var ( f (X)) ≤ E( f ). Prove also similarly that the Gaussian logarithmic Sobolev
inequality (Theorem 5.4) implies the Gaussian Poincaré inequality (Theorem 3.20).
Hint: let ε > 0 be small and use the logarithmic Sobolev inequality for 1 + εf . Show
that Ent((1 + εf )2) = 2ε2 Var ( f (X)) + O(ε3).

5.3. (OPTIMALITY OF THE CONSTANT IN THE LOGARITHMIC SOBOLEV INEQUAL-
ITY) Prove thatTheorem5.1 does not hold if the constant 2 is replaced by any smaller
constant.

5.4. Prove Theorem 5.2. Prove also that c(p) is the best possible constant. Hint: by sub-
additivity of the entropy it suffices to prove the theorem for n = 1. Start with the
duality formula of the entropy (Theorem 4.13). Show first that it suffices to prove
the statement for strictly positive functions f .
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5.5. Prove the following variant of Theorem 5.3. Let f : {–1, 1}n → R and let X be
uniformly distributed on {–1, 1}n. Let v > 0 be such that

n∑
i=1

(
f (x) – f

(
x(i)
))2 ≤ v

for all x ∈ {–1, 1}n. (Note that, as opposed to the statement of Theorem 5.3, the
positive part is omitted in the definition of v.) Prove that, for all t > 0, Z = f (X)
satisfies

P {Z > EZ + t} ≤ e–2t
2/v.

Hint: proceed as in the proof of the theorem, but instead of using the simple convexity
argument, establish first that for real numbers z ≥ y,

(
ez/2 – ey/2

)2 ≤ (z – y)2

8
(ez + ey).

Use this to show that

Ent
(
eλf (X)

)
≤ 1

2

n∑
i=1

E

[(
eλf (X)/2 – eλf

(
X(i)

)/
2
)2
]
≤ E

[
λ2v
8

eλf (X)
]
.

5.6. Prove the following version of Theorem 5.3 for asymmetric Bernoulli distributions.
Let f : {–1, 1}n → R and assume that X = (X1, . . . ,Xn) has i.i.d. components with
distribution P{Xi = 1} = 1 – P{Xi = –1} = p. Let v > 0 be such that

n∑
i=1

(
f (x) – f

(
x(i)
))2

+
≤ v

for all x ∈ {–1, 1}n. Show that if f is nondecreasing in all of its components then for
all t > 0,

P
{
f (X) > Ef (X) + t

} ≤ exp
(

–t2

(1 – p)c(p)v

)
.

If f is nonincreasing then

P
{
f (X) > Ef (X) + t

} ≤ exp
(

–t2

pc(p)v

)
.

Hint: use Theorem 5.2 together with Herbst’s argument.
5.7. (EXTENSION OF BONAMI–BECKNER TO VECTOR-VALUED FUNCTIONS) This

exercise extends Lemma 5.19 to vector-valued functions. Let X be a Rademacher
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random variable and let Z = α0 + α1X where α0,α1 belong to a normed vector
space. For t ≥ 0, let q(t) = βe2t + 1 and define Zt = α0 + e–tα1X. Show that for all
0 ≤ s < t, (

E
[
‖Zt‖q(t)

])1/q(t) ≤ (
E
[
‖Zs‖q(s)

])1/q(s)
.

Hint: if v = α0 + α1 and w = α0 – α1, notice that α0 + e–tα1 = v(1 + et)/2 +
w(1 – e–t)/2 and α0 – e–tα1 = v(1 – et)/2 + w(1 + e–t)/2. By the convexity of the
norm, (

E
[
|Zt|q(t)

])1/q(t)

≤
⎛⎜⎝
(
1+et
2 |v| + 1–e–t

2 |w|
)q(t)

+
(
1–et
2 |v| + 1+e–t

2 |w|
)q(t)

2

⎞⎟⎠
1/q(t)

.

Write β0 =
(
|v| + |w|

)
/2, β1 =

(
|v|–|w|

)
, and use Lemma 5.19.

5.8. (LITTLEWOOD’S INEQUALITY FOR REAL RADEMACHER SUMS) Let Z =∣∣∑n
i=1 biXi

∣∣ be a real-valued Rademacher sum where b1, . . . , bn ∈ R are fixed
coefficients and X1, . . . ,Xn are i.i.d. Rademacher random variables. Show first by
elementary arguments that E[Z4] ≤ 3(E[Z2])2. Next use Hölder’s inequality to
derive E[Z2] ≤ (EZ)2/3(E[Z4])1/3. Conclude that E[Z2] ≤ 3(EZ)2. This is a
slightly weaker version of Theorem 5.20. Is the comparison between the fourth and
the second moments improvable?

5.9. (MARCINKIEWICZ’S INEQUALITIES) Let Y1, . . . , Yn be independent random vari-
ables with finite variance and let X1, . . . ,Xn be independent Rademacher variables.
Prove that

E

⎡⎣( n∑
i=1

Y2
i

)1/2
⎤⎦ ≤ √

2E

[∣∣∣∣∣
n∑
i=1

Xi Yi

∣∣∣∣∣
]
≤ 2

√
2E

[∣∣∣∣∣
n∑
i=1

Yi

∣∣∣∣∣
]
.

Hint: use Theorem 5.20 and symmetrization.
5.10. (KHINCHINE’S INEQUALITY) Let ε1, . . . , εn, be a sequence of independent

Rademacher random variables. Let α1, . . . ,αn be n fixed real numbers. Prove that
for p = 1, 2, . . . ,

E

[∣∣∣∣∣
n∑
i=1

εiαi

∣∣∣∣∣
2p]

≤ (2p)!
2pp!

( n∑
i=1

α2
i

)p

.

Using the central limit theorem and the known values for the moments of the stand-
ard Gaussian distribution, check that the dimension-free coefficients (2p)!

2pp! cannot be
improved. Hint: if we are ready to replace the constants (2p)!/(2pp!) by (2p – 1)p,
the above inequalities follow from the Bonami–Beckner inequalities. Another version
can be derived fromHoeffding’s inequality.
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5.11. Show that the constant 2 on the right-hand side of the Gaussian logarithmic Sobolev
inequality (Theorem 5.4) is the best possible. Hint: the bound for the moment
generating function in the Gaussian concentration inequality is an equality if f is
linear.

5.12. (THEOREM 5.4) Work out the details of the density argument used in the proof of
Theorem 5.4.

5.13. (POINCARÉ AND LOGARITHMIC SOBOLEV INEQUALITIES FOR GENERAL GAUS-
SIAN DISTRIBUTIONS) Assume that the random vector X ∈ Rn has centered
Gaussian distribution with covariance matrix �. Show that for any continuously
differentiable function f : Rn → R,

Var ( f (X)) ≤ E
[〈�∇f (X),∇f (X)〉]

and

Ent
(
f 2
) ≤ 2E

[〈�∇f (X),∇f (X)〉].
5.14. Detail the first step of the proof of Theorem 5.8. Hint: by total boundedness and

sample path continuity, Z = supt∈D Xt where D is a dense countable subset of T .
Use the Gaussian Poincaré inequality for finite subsets and monotone convergence
to show that Z has an expected value (by relating it to the median of Z). Then again,
use monotone convergence and the theorem for finite sets to conclude.

5.15. (NON-CENTERED CHI-SQUARED RANDOM VARIABLES) If X1, . . . ,XD are inde-
pendent standard normal random variables, then Z2 = (X1 + δ)2 +

∑D
i=2 X

2
i has

chi-square distribution with D degrees of freedom and non-centrality parameter δ2.
Compute the expected value and the variance of Z2. Show that Z2 is sub-gamma with
variance factor v = 2EZ2 + 2δ2 and scale factor 2. Use theGaussian Poincaré inequal-
ity and the Gaussian concentration inequality to show that the variance of Z is less
than 1, and that Z is sub-Gaussian with variance factor 1. Show how this implies that
Z2 is sub-gamma with variance factor 4EZ2 and scale factor 2.

5.16. (ADAPTING HERBST’S ARGUMENT) Let X1, . . . ,Xn be independent standard
Gaussian random variables. Let f denote a differentiable function on Rn such
that E

[
exp(λ‖∇f (X1, . . . ,Xn)‖2)

]
< ∞ for λ < λ0 where λ0 may be ∞. Let

Z = f (X1, . . . ,Xn). Prove that for λ, θ satisfying λ/θ < λ0 and λθ < 2,

logE
[
exp (λ(Z – EZ))

] ≤ λθ

2(1 – λθ/2)
logE

[
exp

(
λ‖∇F‖2/θ)].

Hint: starting from Gaussian logarithmic Sobolev inequality, use Corollary 4.15 to
upper bound E

[‖∇f‖2 exp(λZ)]. Apply this result when f is the squared norm of
the orthogonal projection of X on some linear subspace ofRn.

5.17. (SZAREK’S INEQUALITY FOR GAUSSIAN SUMS) Let b1, . . . , bn be elements of a
normed vector space and let X1, . . . ,Xn be independent standard Gaussian random
variables. Let Z = ‖∑n

i=1 biXi‖. Prove that√
E [Z2] ≤ √

2EZ.
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Hint: start fromTheorem 5.20 and use the central limit theorem as in the proof of the
Gaussian Poincaré inequality or as in the proof of the Gaussian logarithmic Sobolev
inequality. The factor

√
2 is not optimal and can be improved to

√
π/2. The best

constants in comparison of moments of Gaussian vectors can be found in Latała and
Oleszkiewicz (1999).

5.18. (NELSON’S THEOREM) Let X be a standard Gaussian random variable. For any
0 < γ ≤ 1, let the operator Tγ map any function f with E[f (X)2] < ∞ to another
function Tγ f defined by

Tγ f (y) = E
[
f
(
γ y +

√
1 – γ 2X

)]
.

Check first that for allγ ≤ 1,Tγ is a contraction, that is,E
[
(Tγ f (X))2

] ≤ E[f (X)2].
Let t ≥ 0, 1 < p < ∞, q(t) = 1 + e2t(p – 1), and let the function f be such that
E[|f (X)|p] < ∞. Prove that(

E
[
|Te–t f (X)|q(t)

])1/q(t) ≤ (
E
[
|f (X)|p

])1/p .
Check that this is enough to establish the property for nonnegative twice differenti-
able functions. Define the differential operator L by Lf (x) = f ′′(x) – xf ′(x). Check
first that for any nonnegative twice differentiable function g, dTe–t g/dt = LTe–t g and
that, for any r > 1,

Ent (g(X)r) ≤ –
r2

2(r – 1)
E
[
g(X)r–1Lg(X)

]
.

Hint: this follows from the Gaussian logarithmic Sobolev inequality by rewrit-
ing E

[
h(X)2

]
using integration by parts, where h(x) = ∂xgr/2(x). Prove that

(1/q(t)) logE
[
|Te–t f (X)|q(t)

]
is a nonincreasing function of t. The argument paral-

lels the proof of Lemma 5.19. The collection of operators (Te–t )t≥0 is known as the
Ornstein–Uhlenbeck semigroup.The hypercontractivity of theOrnstein–Uhlenbeck
semigroup was first proved by Nelson (1973).

5.19. (GAUSSIAN HYPERCONTRACTIVITY IN SEVERAL DIMENSIONS) Suppose
X1, . . . ,Xn are independent standard Gaussian random variables. For any
0 < γ ≤ 1, let the operator Tγ map any function f : Rn → R such that
E[f (X1, . . . ,Xn)2] < ∞ to another function

Tγ f (y1, . . . , yn) = E
[
f
(
γ y1 +

√
1 – γ 2X1, . . . , γ yn +

√
1 – γ 2Xn

)]
.

Let t ≥ 0, 1 < p < ∞, q(t) = 1 + e2t(p – 1), and let the function f be such that
E[|f (X1, . . . ,Xn)|p] < ∞. Prove that(

E
[
|Te–t f (X1, . . . ,Xn)|q(t)

])1/q(t) ≤ (
E
[
|f (X1, . . . ,Xn)|p

])1/p.
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Hint: use the results of Exercise 5.18 and imitate the last part of the proof of
Theorem 5.16.

5.20. (GAUSSIAN HYPERCONTRACTIVITY AND HERMITE POLYNOMIALS) Recall the
definition of Hermite polynomials hn from Section 5.9. Let the operator Tγ with
0 < γ ≤ 1 be defined as in Exercise 5.18. Prove that the Hermite polynomials are
eigenfunctions of Tγ , for all n = 1, 2, . . . , that is,

Tγ hn = γ nhn.

Hint: recall the definition of the differential operator Lf (x) = f ′′(x) – xf ′(x) from
Exercise 5.18. Use the relation dTe–t g/dt = LTe–t g established in Exercise 5.18, the
fact that L ◦ Te–t = Te–t ◦ L, and the fact that Hermite polynomials satisfy nhn =
–Lhn. For a vector k = (k1, . . . , kn) of nonnegative integers, let |k| =

∑n
i=1 ki. Define

f (x1, . . . , xn) =
∑

k∈Nn αk
∏n

i=1 hki(xi), where
∑

k∈Nn α2
k

< ∞. Show that

Tγ f =
∑
k

γ kαk

n∏
i=1

hki .

This is the exact Gaussian analog of Theorem 5.16. The Hermite polynomials form
an orthonormal basis of the Hilbert space of square integrable functions of a vector
of independent standard Gaussian random variables, and they are the eigenfunctions
of the hypercontractive operator Tγ .

5.21. (TIGHTNESS OF HYPERCONTRACTIVE BOUNDS) For λ ≥ 0, define fλ(x) =
exp(λx – λ2/2). Let the operator Tγ (for γ ∈ [0, 1) be defined as in Exercise 5.18.
ComputeTγ fλ andE[| fλ(X)|p], whereX is a standardGaussian random variable and
p > 1. Check that if q > 1 + e2t ,

sup
f :E[| f (X)|2]<∞

E[|Te–t f (X)|q]1/q

E[| f (X)|2]1/2
= ∞.

This proves that the hypercontractive bounds of Exercises 5.18 and 5.19 are tight.
5.22. (HERMITE POLYNOMIALS) Recall the definition of the Hermite polynomials from

Section 5.9. Prove that for λ, x ∈ R,

eλx–λ
2/2 =

∞∑
k=0

λk
√
k!
hk(x).

Prove that if (X1,X2) is a Gaussian vector where X1 and X2 are standard Gaussian
random variables, then

E
[
exp

(
λX1 –

λ2

2

)
exp

(
μX2 –

μ2

2

)]
= exp (λμE[X1X2]).
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Combine the two statements in order to establish that theHermite polynomials form
an orthonormal family, that is,

E
[
hi(X)hj(X)

]
=

{
1 if i = j
0 otherwise,

where X is standard Gaussian. Prove the following three-term recurrences for nor-
malized Hermite polynomials:

xhn(x) =
√
n + 1hn+1(x) + h′n(x)

xhn(x) =
√
n + 1hn+1(x) +

√
nhn–1(x)

for all n = 0, 1, 2, . . . and x ∈ R. Note that the three-term recurrences entail h′n(x) =√
nhn–1(x). From the recurrences, deduce the Christoffel–Darboux formula: for

x �= y, for n = 1, 2, . . . ,

n–1∑
i=0

hi(x)hi(y) =
√
n
hn(x)hn–1(y) – hn–1(x)hn(y)

(x – y)
.

The Hermite polynomials form an orthonormal basis of the space L2(γ ) of square-
integrable functions under the standardGaussian distribution γ . This can be checked
by invoking the density of bounded continuous functions in L2(γ ) and the density of
polynomials in the set of continuous functions with respect to the supremum norm
over compact sets.

5.23. (INVARIANCE OF GUE) Prove that the GUE is invariant under unitary transforma-
tions: ifW ∈ Un, and the randommatrixH is distributed according to the GUE, then
so isW H.

5.24. (ZEROS OF MULTIVARIATE POLYNOMIAL) Prove that if p is a nonzero n-variate
polynomial, then {x ∈ Rn : p(x) = 1} has Lebesgue measure 0 overRn.
Hint: use induction over n and the Tonelli–Fubini theorem.

5.25. (MULTIPLE ROOTS AND DISCRIMINANT) Let P(x) =
∑m

i=0 aix
i and

Q(x) =
∑n

j=0 bjx
j. The Sylvester matrix SP,Q is the (n + m)× (n + m) matrix

defined by stacking n – 1 circular shifts of

(am, am–1, . . . , a0, 0, . . . , 0︸ ︷︷ ︸
n–1 times

)

andm – 1 circular shifts of

(bn, bn–1, . . . , b0, 0, . . . , 0︸ ︷︷ ︸
m–1 times

) :
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SP,Q =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

am am–1 . . . a0 0 . . . . . . 0
0 am am–1 . . . . . . a0 0 . . . 0
0 0 am am–1 . . . . . . a0 0 . . . 0
0 0 . . . . . . . . . . . . . . . . . . . . . 0
0 0 0 . . . . . . am am–1 . . . . . . a0
bn bn–1 . . . . . . . . . b0 0 . . . 0
0 bn bn–1 . . . . . . . . . b0 0 . . . 0

. . . 0 bn bn–1 . . . . . . . . . b0 . . . 0

0 . . . . . . . . . . . . . . .
. . . . . . b0 0

0 0 . . . 0 bn bn–1 . . . . . . . . . b0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

The determinant of SP,Q is called the discriminant of P and Q and it is denoted by
D(P,Q). Prove that ifP andQ have a common root, thenD(P,Q) = 0. Prove that ifP
hasmultiple roots, thenD(P, P′) = 0. Prove that there exists an n2-variate polynomial
P such that if an n× nmatrix A has eigenvalues with multiplicity larger than 1, then
P vanishes on the vector defined by the coefficients of A. See Lang (1965) for details
about discriminants.

In Exercises 5.26–5.35, we denote byHd
n the subset of n× n Hermitian matrices

with pairwise distinct eigenvalues. Let Dd
n denote the subset of n× n real diagonal

matrices with decreasing diagonal entries. Let U g
n denote the subset of n× n unitary

matrices with real positive diagonal entries. If A is an n× nmatrix, then the i, jminor
of A, A(i,j) is obtained by deleting the ith row and the jth column of A. We denote
A(k) = A(k,k). A matrix from U g

n belongs to U vg
n if all its minors are invertible. Let the

set of “good”HermitianmatricesHd,g
n be the subset of n× nHermitianmatrices that

admit a decompositionUDU∗ whereU ∈ U vg
n andD ∈ Dd

n .
5.26. Prove that, almost surely, a random matrix from the GUE has pairwise distinct

eigenvalues, that is, Hn \Hd
n has Lebesgue measure 0. Hint: the coefficients of the

characteristic polynomial of a matrix are polynomials of the entries of the matrix. Use
Exercises 5.24 and 5.25.

5.27. Prove that ifH ∈ Hd
n and for all 1 ≤ k ≤ n,H andH(k) do not have common eigen-

values then if H = UDU∗ with U ∈ Un and D ∈ Dn, U has nonzero entries. Prove
that Hn \Hd,g

n has Lebesgue measure 0. Hint: the adjugate Adj(H) of H is defined
byAdj(H)i,j = (–1)i+jdet(H(j,i)). Recall thatHAdj(H) = Adj(H)H = det(H)In (see,
e.g. Apostol (1969, Theorem 3.12)). Let λ be an eigenvalue of H ∈ Hd

n . Let
A = H – λIdn. Use the assumptionH ∈ Hd

n to check that the columns of Adj(A) are
scalar multiples of a column ofU. Finally, use the assumption thatH andH(k) do not
have common eigenvalues to verify that Adj(A) has nonzero entries. To prove the last
statement, use results from Exercises 5.24 and 5.25. (See the proof of Lemma 2.5.5 in
Anderson, Guionnet and Zeitouni (2010).)

5.28. (DENSITY OF EIGENVALUES I) Prove the existence of a diffeomorphism (i.e.
a bijective differentiable map whose inverse is differentiable) between Hd,g

n and
Dd

n × Rn(n–1) where Dd
n is the set of n× n real diagonal matrices with decreasing
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diagonal coefficients. Hint: let T be the operator that maps U ∈ U vg
n to the

vector

T(U) =
(
U1,2

U1,1
,
U1,3

U1,1
, . . . ,

U1,n

U1,1
,
U2,3

U2,2
, . . . ,

U2,n

U2,2
, . . . ,

Un–1,n

Un–1,n–1

)
.

EachUi,j/Ui,i (1 ≤ i < j ≤ n) should be considered as a pair of real numbers corres-
ponding to the real and imaginary part. Check that T is one-to-one on U vg

n and that
T(U vg

n ) is open in Rn(n–1). (See Anderson, Guionnet, and Zeitouni (2010, Lemma
2.5.5).)

5.29. (DENSITY OF EIGENVALUES II) Let T be defined as in Exercise 5.28. Let
J : Dd

n × T(U g
n ) → Hd,g

n be the inverse of the mapping defined by

Hd,g
n → Dd

n × T(U g
n )

H = Udiag(λ1, . . . , λn)U∗ �→ (diag(λ1, . . . , λn),T(U)).

Let p = (p1, . . . , pn(n–1)) ∈ T(U g
n ). Define a one-to-onemapping r : {(i, j) : 1 ≤ i <

j ≤ n} → {1, n(n – 1)/2} by r(i, j) =
∑i–1

k=1(n – k) + j – i + 1 (this is the rank of
(i, j) when traversing the upper-triangle in a row-wise fashion). The purpose of
this exercise is to outline a collection of equations satisfied by the n2 × n2 matrix
of partial derivatives of J (the Jacobian matrix of J). Exercise 5.30 takes advantage
of these equations to establish the fact that the determinant of the Jacobian mat-
rix (the Jacobian determinant) is the product of the square of the Vandermonde
determinant defined by (λ1, . . . , λn) (that is

∏
1≤i<j≤n(λi – λj)) and of a function of

(p1, . . . , pn(n–1)) ∈ T(U g
n ). This observation is an essential part of the proof of

Lemma 5.24. For each 1 ≤ � ≤ n(n – 1), let ∂U/∂p� be the n× n complex mat-
rix of partial derivatives of U with respect to p�. Verify that the complex matrix
S� = U∗ ∂U

∂p�
is skewHermitian, that is,

S∗� =
∂U∗

∂p�

U = –S�.

Now letting B� = U∗∂H/∂p�U for each 1 ≤ � ≤ n(n – 1), verify that

U∗ ∂H
∂p�

U = S� × diag(λ1, . . . , λn) – diag(λ1, . . . , λn)× S�,

or equivalently that

B�[i, j] = S�[i, j](λj – λi), (5.7)

for i, j ≤ n. Verify that for each 1 ≤ i ≤ n, ∂H/∂λi is the matrix of the ortho-
gonal projection on the line generated by the ith column of U. Verify that for each
1 ≤ i ≤ n,
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U∗ ∂H
∂λi

U = diag
(
0, . . . 0︸ ︷︷ ︸
i–1 times

, 1, 0, . . . , 0︸ ︷︷ ︸
n–i times

)
,

which implies(
U∗ ∂H

∂λi
U
)
[j, k] =

n∑
j′=1

n∑
k′=1

∂H
∂λi

[j′, k′]U[j′, j]U[k′, k] = 1{i=j=k}, (5.8)

for 1 ≤ j, k ≤ n.
5.30. (DENSITY OF EIGENVALUES III) The Jacobian matrix of the mapping J defined in

Exercise 5.29 is an n2 × n2 real matrix Jac(J) which may be described in partitioned
form by

Jac(J) =

1≤j≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

∂Hj,j

∂λi

Re∂Hj,k

∂λi

Im∂Hj,k

∂λi
1 ≤ i ≤ n

∂Hj,j

∂p�

Re∂Hj,k

∂p�

Im∂Hj,k

∂p�

1 ≤ � ≤ n(n – 1) .

The key step in the proof of Lemma 5.24 consists of showing that det (Jac(J)) is the
product of the square of a Vandermonde determinant and of an expression that only
depends onU. Define the matrixM in partitioned form as

M =

1≤j≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

U[i, j]U[i, j] ReU[i, j]U[i, k] ImU[i, j]U[i, k] 1 ≤ i ≤ n

ReU[j′, j]U[k′, j] 2ReU[j′, j]U[k′, k] 2ImU[j′, j]U[k′, k] 1 ≤ j′ < k′ ≤ n

–ImU[j′, j]U[k′, j] –2ImU[j′, j]U[k′, k] 2ReU[j′, j]U[k′, k] 1 ≤ j′ < k′ ≤ n .
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Write C = Jac(J)×M in partitioned form as

C =
(
C1,1 C1,2 C1,3

C2,1 C2,2 C2,3

)

The exercise mostly consists of checking that

C =

1≤j≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷ 1≤j<k≤n︷ ︸︸ ︷⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Idn 0 0 1 ≤ i ≤ n

? ReB�[j, k] ImB�[j, k] 1 ≤ � ≤ n(n – 1)

where B� is defined as in Exercise 5.29.

1. Check that C1,1 = Idn while C1,2 = C1,3 = 0. Hint: verify that
C1,1[i, j] = U∗ ∂H

∂λi
U[j, j], while for 1 ≤ j < k ≤ n, m = r(j, k), C1,2[i,m]

(resp. C1,3[i,m]) is the real (resp. imaginary) part of the U∗ ∂H
∂λi

U[j, k]. Use
(5.8) from Exercise 5.29.

2. Check that for � ∈ {1, . . . , n(n – 1)} and m ∈ {1, . . . , n(n – 1)/2},
C2,2[�,m] = ReB�[i, j] = ReS�[i, j](λi – λj) and C2,3[�,m] = ImB�[i, j] =
ImS�[i, j](λi – λj) where 1 ≤ i < j ≤ n, m = r(i, j). Hint: use (5.7) from
Exercise 5.29.

3. Check that the determinant of the n(n – 1) by n(n – 1) real matrix (C2,2 C2,3)
is the product of �(λ1, . . . , λn)2 and of a quantity that only depends on U,
where �(λ1, . . . , λn) is the Vandermonde determinant

∏
1≤i<j≤n(λi – λj).

Deduce from this that the Jacobian determinant det(Jac(J)) can be written
as the product of�(λ1, . . . , λn)2 and of a quantity that only depends on the
coefficients ofU.

4. Conclude the proof of Lemma 5.24 by combining the results of Exercises
5.24–5.29 and the change-of-variables formula in multiple integrals.

(This argument is from Mehta (2004, Chapter 3) and Anderson, Guionnet, and
Zeitouni (2010, Chapter 2); see also Tao (2012). It can be tailored to other
ensembles of Gaussian randommatrices.)



E X E RC I S E S | 165

5.31. Using the notation of Theorem 5.23, prove that

∫
Rn

�(x1, . . . , xn)2
e–
∑n

i=1
x2i
2√

2π
n =

n–1∏
j=0

j! .

Hint: use the pattern of proof of Lemma 5.24.
5.32. (MOMENTS OF THE SEMI-CIRCULAR DISTRIBUTION) The semi-circular distribu-

tion has density 2/π
√
1 – x21{|x|≤1}. Letm2k denote its 2kth moment for k = 1, 2, . . ..

Prove that

m2k =
Ck

22k

whereCk =
(2k
k

)
/(k +1) is the kth Catalan number.Hint: prove thatm2k = 2/(π(2k +

1))
∫ π/2
–π/2 sin(θ)

2k+2dθ and also thatm2k=2/(π(2k+2))
∫ π/2
–π/2 sin(θ)

2kdθ .
5.33. (CONCENTRATION OF THE SPECTRAL MEASURE) LetH be a random n× nmat-

rix from the GUE with eigenvalues λ1 ≥ · · · ≥ λn and spectral measure Ln. Let B
denote the set of functions f on R with supx∈R | f (x)| ≤ 1 and Lipschitz constant
not larger than 1. Prove that for t ≥ 0

sup
f∈B

P
{∣∣Ln( f ) – E[Ln( f )]∣∣ ≥ t

} ≤ 2e–
n2 t2
2 .

Hint: use Lidskii’s inequality (see Exercise 3.16) and Theorem 5.6. (See Anderson,
Guionnet, and Zeitouni (2010, Theorem 2.3.5).)

5.34. (CONCENTRATION OF THE SPECTRAL MEASURE OF MATRICES FROM THE
GUE, CONTINUED) Let H be a random n× n random matrix from the GUE with
eigenvalues λ1 ≥ · · · ≥ λn and spectral measure Ln. Let B denote the set of func-
tions f on R with supx∈R | f (x)| ≤ 1 and Lipschitz constant not larger than 1. Let
Z = supf∈B

∣∣Ln( f ) – E[Ln( f )]∣∣ be the bounded Lipschitz distance between the
empirical spectral measure and the average spectral measure. Prove that for t ≥ 0,

P {Z ≥ EZ + t} ≤ 2e–
n2 t2
2 .

Prove that there exists a universal constant κ such that

EZ ≤ κ√
n
.

Hint: use again Theorem 5.6 as in Exercise 5.33 to establish the tail bound. (See
Anderson, Guionnet, and Zeitouni (2010, Theorem 2.3.5).) A proof of the upper
bound for EZ can be derived from Götze and Tikhomirov (2003, 2005) who state
similar bounds for the uniform distance between the empirical spectral distribu-
tion function and the semi-circular distribution function and the uniform distance
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between the average empirical spectral distribution function and the semi-circular
distribution function. By standard results (see Dudley, 2002), the bounded-Lipschitz
distance to the semi-circular distribution is within a constant factor of the uniform
distance to the semi-circular distribution. Note that this upper bound holds under
rather general moment conditions on the entries of the randomHermitian matrices.

5.35. (MOMENT-GENERATING FUNCTION OF THE SPECTRAL MEASURE OF RANDOM
MATRICES FROM THE GUE) Let H be an n× n random matrix from the GUE. The
aim of this exercise is to compute the expected moment-generating function of the
spectral measure Ln ofH, that is,

Fn(s) = E

[
n∑
i=1

1
n
esλi

]
for s ∈ R,

and then to check the pointwise convergence of Fn to the moment-generating
function of the semi-circular distribution, that is,

lim
n→∞ Fn(s) =

∑
k∈N

m2ks2k

(2k)!
for all s ∈ R.

The even moments (m2k)k∈N of the semi-circular distribution are determined
in Exercise 5.32. As in Exercises (5.20–5.22), hi denotes the ith normal-
ized Hermite polynomial. Use the Christoffel–Darboux’s identity (see
Exercise 5.22) to establish that for all x ∈ R and n = 1, 2, . . . , 1

n

∑n–1
i=0 hi(x)

2 =
1√
n (h

′
n(x)hn–1(x) – hn(x)h

′
n–1(x)). To lighten notation, denote Kn(x, x) =

e–x2/2√
2πn (h

′
n(x)hn–1(x) – hn(x)h

′
n–1(x)) . Use Lemma 5.25 to prove that for any

bounded continuous function f ,

ELnf =
∫

R

f (x/
√
4n)Kn(x, x)dx.

Hint: prove and use the fact that

d
dx

Kn(x, x) = –e–x
2/2hn(x)hn–1(x) = –e–x

2/2 hn(x)h
′
n(x)√
n

.

(See Anderson, Guionnet, and Zeitouni (2010, page 102).)
5.36. (GAUSSIAN ORTHOGONAL ENSEMBLE) A random real symmetric n× n matrix A

belongs to the Gaussian Orthogonal Ensemble (GOE) if the entries (Ai,j)1≤i≤j≤n are
independent centered Gaussian random variables with variance 1/n. Following the
approach described in Exercises 5.24–5.30, prove the determinantal formula for the
GOE: the joint density of the eigenvalues of a n× n random matrix from the GOE at
λ1 > λ2 > · · · > λn is

Dn

σ 2n� (λ1, . . . , λn) exp
(
–
∑n

i=1 λ2
i

2σ 2

)
whereDn is a normalizing constant and σ = 1/

√
4n.
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5.37. (TAIL INEQUALITY FOR MAXIMA OF GAUSSIAN RANDOM VECTORS) Let Z be
the maximum of the absolute value of n independent standard Gaussian random
variables, and for t ≥ 1, letU(t) = inf{x : �(x) ≥ 1 – 1/t}. Prove that for t > 0,

P {Z – EZ ≥ t + δn} ≤ exp
(
–

t2U(2n)2

2(2 + tU(2n)/3)

)
,

where δn > 0 and limn(2 log(2n))3/2δn = π2/12. Hint: represent Z as U(2 exp(Y))
where Y is the maximum of n independent exponential random variables with expec-
ted value 1 and use the fact that U(ex) is concave in x. The second part of the
statement may be checked using standard results from extreme value theory (see de
Haan and Ferreira (2006)).



6

The EntropyMethod

InChapter 3 we saw that the Efron–Stein inequality served as a powerful tool for bounding
the variance of functions of several independent random variables. In many cases, how-
ever, it is reasonable to expect that, as in the case of sums of bounded random variables,
the tail probabilities decrease at an exponential speed, a phenomenon the Efron–Stein
inequality fails to capture. In Chapter 5 we have seen that logarithmic Sobolev inequal-
ities, together with Herbst’s argument, may be used to derive exponential concentration
inequalities. However, the logarithmic Sobolev inequalities presented there are only valid
for functions of either Bernoulli or Gaussian random variables and therefore the scope
of the concentration inequalities obtained is significantly more limited than that of the
Efron–Stein inequality.

The purpose of this chapter is to attempt to generalize the methodology based on log-
arithmic Sobolev inequalities that allows one to prove exponential concentration bounds
that hold for functions of arbitrary independent random variables. A way to achieve this is
by trying to mimic the procedure that worked for functions of Bernoulli and Gaussian ran-
dom variables, that is, to start with a logarithmic Sobolev inequality and then, according
to Herbst’s trick, apply it to exponential functions of the random variable of interest. Since
exact analogs of the Bernoulli and Gaussian logarithmic Sobolev inequalities do not always
exist, we need to resort to appropriate modifications. Luckily, the sub-additivity of entropy
(see Theorems 4.10 and 4.22) holds in a great generality and indeed, this inequality serves
as our starting point. Then, by bounding the right-hand side of the inequality of Theorem
4.10, we obtain an appropriatemodified logarithmic Sobolev inequalitywhich, in turn, can be
used via Herbst’s argument to derive exponential concentration inequalities.

We term the proof method described above the entropy method, and the purpose of this
chapter is to define its basis and to show some of the simplest powerful concentration
bounds one can achieve using this method. In Chapters 11, 12, 14, and 15 we elaborate
the entropy method and show various extensions.

As in Chapter 3, we investigate the concentration behavior of a real-valued random vari-
able Z = f (X1, . . . ,Xn) where X1, . . . ,Xn are independent random variables taking values
in a measurable spaceX and f : X n → R is a function.
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The main purpose of the entropy method for proving concentration inequalities is to
apply the sub-additivity of entropy (Theorems 4.10 and 4.22) for the positive random
variable Y = eλZ where λ is a real number. Recall that by the sub-additivity of entropy,

Ent(Y) ≤ E
n∑
i=1

Ent(i)(Y)

or, equivalently,

E[Y log Y] – (EY) log(EY)

≤
n∑
i=1

E
[
E(i)[Y log Y] –

(
E(i)Y

)
log
(
E(i)Y

)]
(6.1)

where E(i) denotes integration with respect to the distribution of Xi only. Then, normal-
izing by EeλZ and denoting the logarithmic moment-generating function of Z – EZ by
ψ(λ) = logEeλ(Z–EZ), the left-hand side of this inequality becomes

Ent
(
eλZ
)

EeλZ
= λψ ′(λ) – ψ(λ). (6.2)

Our strategy is based on using (6.2) the sub-additivity of entropy and then univariate calcu-
lus to derive upper bounds for the derivative of ψ(λ). By solving the obtained differential
inequality, we obtain tail bounds via Chernoff’s bounding.

To achieve this in a convenient way, we need some further bounds for the right-hand
side of the inequality above. This is the purpose of Section 6.3 in which, relying on the sub-
additivity of entropy, we prove some basic results which will serve as our starting point.
These results are reminiscent of the classical logarithmic Sobolev inequalities discussed
in Chapter 5, where it is shown that concentration inequalities follow from logarithmic
Sobolev inequalities by Herbst’s argument.Here we formalize this argument.

Proposition 6.1 (HERBST’S ARGUMENT) Let Z be an integrable random variable such that
for some v > 0, we have, for every λ > 0,

Ent
(
eλZ
)

EeλZ
≤ λ2v

2
.

Then, for every λ > 0,

logEeλ(Z–EZ) ≤ λ2v
2

.

Proof The condition of the proposition means, via (6.2), that

λψ ′(λ) – ψ(λ) ≤ λ2v
2

,
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or equivalently,

1
λ

ψ ′(λ) –
1
λ2 ψ(λ) ≤ v

2
.

SettingG(λ) = λ–1ψ(λ), we see that the differential inequality becomesG′(λ) ≤ v/2.
SinceG(λ) → 0 as λ → 0, this impliesG(λ) ≤ λv/2, and the result follows. �

First, we present in Section 6.1 two simple direct methods to bound the right-hand side
of the inequality of the sub-additivity of entropy and use Herbst’s argument to conclude.
This permits us to derive the celebrated bounded differences inequality, a simple prototypical
exponential concentration inequality for functions of bounded differences that has found
countless applications. We also present a sharper version in which the bounded differences
assumption is significantly relaxed.

In Section 6.4 we present the first and simplest application of these modified logarithmic
Sobolev inequalities. This first example is surprisingly powerful as it may be used to prove
exponential concentration in many interesting cases. We describe some applications. The
obtained inequalities reach further than the bounded differences inequality as they are able
to handle much more general functions than just those having the bounded-differences
property. A simple but useful application for convex Lipschitz functions of independent
random variables is presented in Section 6.6.

In Section 6.7 we return to the class of self-bounding functions introduced in Section 3.3
and prove an exponential concentration inequality, thus providing a significant sharpen-
ing of Corollary 3.7. The notion of self-bounding function is generalized and further
investigated in Section 6.11.

In Sections 6.8, 6.9, and 6.13 we use the entropy method to prove inequalities that may
be considered as exponential versions of the Efron–Stein inequality. Various concentration
results are shown here under different conditions with the purpose of demonstrating the
flexibility of the entropy method.

We close the chapter by proving Janson’s celebrated inequality for the lower tail probab-
ilities of random Boolean polynomials. Even though Janson’s inequality is not based on the
entropy method, its proof shows some similarities with the techniques we use throughout
the chapter.

6.1 The Bounded Differences Inequality

As a first illustration of the entropy method, we derive an exponential concentration
inequality for functions of bounded differences. Unlike the Bernoulli and Gaussian concen-
tration inequalities of Chapter 5, this inequality is distribution free: apart from independ-
ence, nothing else is required from the random variables X1, . . . ,Xn.

Recall that a function f : X n → R has the bounded differences property if for some
nonnegative constants c1, . . . , cn,
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sup
x1,...,xn ,
x′i∈X

|f (x1, . . . , xn) – f (x1, . . . , xi–1, x′i , xi+1, . . . , xn)| ≤ ci , 1 ≤ i ≤ n.

In Chapter 3, as a corollary of the Efron–Stein inequality, we saw that if f has the
bounded differences property, then Z = f (X1, . . . ,Xn) satisfies Var (Z) ≤ (1/4)

∑n
i=1 c

2
i

(see Corollary 3.2). The bounded differences inequality shows that such functions satisfy
a sub-Gaussian tail inequality in which the role of the variance factor is played by the
Efron–Stein upper bound of the variance v = (1/4)

∑n
i=1 c

2
i .

Theorem6.2 (BOUNDED DIFFERENCES INEQUALITY)Assume that the function f satisfies
the bounded differences assumption with constants c1, . . . , cn and denote

v =
1
4

n∑
i=1

c2i .

Let Z = f (X1, . . . ,Xn) where the Xi are independent. Then

P {Z – EZ > t} ≤ e–t
2/(2v).

Note that since the bounded differences assumption is symmetric,Z also satisfies the lower-
tail inequality

P {Z – EZ < –t} ≤ e–t
2/(2v).

The proof combines sub-additivity of entropy, Hoeffding’s lemma (Lemma 2.2) and
Herbst’s argument. The following way of looking at Hoeffding’s lemma may illuminate
the use of the sub-additivity of entropy: if Y is a random variable taking its values in
[a, b], then we know from Lemma 2.2 that ψ ′′(λ) ≤ (b – a)2/4 for every λ ∈ R, where
ψ(λ) = logEeλ(Y–EY). Hence,

λψ ′(λ) – ψ(λ) =
∫ λ

0
θψ ′′(θ)dθ ≤ (b – a)2λ2

8
,

which means that

Ent(eλY)
EeλY

≤ (b – a)2λ2

8
. (6.3)

By Proposition 6.1, this inequality implies Hoeffding’s inequality, that is, ψ(λ) ≤
(b – a)2λ2/8 for all λ. Thus, (6.3) is a way of rephrasing Hoeffding’s inequality, which is
stronger than the usual one.

Proof Recall that by the sub-additivity of entropy (6.1),

Ent(eλZ) ≤ E
n∑
i=1

Ent(i)
(
eλZ
)
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where Ent(i) denotes conditional entropy, givenX(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn). By
the bounded differences assumption, given X(i), Z is a random variable whose range is
in an interval of length at most ci, so by (6.3),

Ent(i)
(
eλZ
)

E(i)eλZ
≤ c2i λ

2

8
.

Hence, by the sub-additivity of entropy,

Ent(eλZ) ≤ E

[ n∑
i=1

(
c2i λ

2

8

)
E(i)eλZ

]
=

n∑
i=1

c2i λ
2

8
EeλZ,

or equivalently,

Ent
(
eλZ
)

EeλZ
≤ λ2v

2
.

Proposition 6.1 allows us to conclude that

ψ(λ) = logEeλ(Z–EZ) ≤ λ2v
2

.

Finally, by Markov’s inequality,

P {Z > EZ + t} ≤ eψ(λ)–λt ≤ eλ
2v/2–λt .

Choosing λ = t/v, the upper bound becomes e–t2/(2v). �

This extends Corollary 3.2 to an exponential concentration inequality. Thus, the applic-
ations of Corollary 3.2 in all examples of functions with bounded differences shown in
Section 3.2 (such as bin packing, the length of the longest common subsequence, the L1
error of the kernel density estimate, etc.) are improved in an essential way without further
work.

Next we describe another application which is the simplest example of a concentration
inequality for sums of independent vector-valued random variables.

Example 6.3 (A HOEFFDING-TYPE INEQUALITY IN HILBERT SPACE) As an illustra-
tion of the power of the bounded differences inequality, we derive a Hoeffding-type
inequality for sums of random variables taking values in a Hilbert space. In par-
ticular, let X1, . . . ,Xn be independent zero-mean random variables taking values in
a separable Hilbert space such that ‖Xi‖ ≤ ci/2 with probability one and denote
v = (1/4)

∑n
i=1 c

2
i . Then, for all t ≥

√
v,

P

{∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

}
≤ e–(t–

√
v)2/(2v).
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This follows simply by observing that, by the triangle inequality, Z =
∥∥∑n

i=1 Xi
∥∥

satisfies the bounded differences property with constants ci, and therefore

P

{∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ > t

}
= P

{∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ – E
∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥ > t – E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
}

≤ exp

(
–

(
t – E

∥∥∑n
i=1 Xi

∥∥)2
2v

)
.

The proof is completed by observing that, by independence,

E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≤
√√√√E

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
2

=

√√√√ n∑
i=1

E ‖Xi‖2 ≤ √
v.

The next example illustrates a surprising application in which the bounded differences
inequality is applied in a quite unexpected context.

Example 6.4 (SPECTRAL MEASURE OF RANDOM HERMITIAN MATRICES) LetH=(Hi,j)
be an n× n random Hermitian matrix such that the vectors (Hi)1≤i≤n are independ-
ent, where Hi = (Hi,j)1≤j≤i. Let LH denote the empirical spectral measure of H (i.e.
the probability measure that gives mass r/n to an eigenvalue ofH with multiplicity r).
Given a bounded function g : R → R that has total variation

∥∥g∥∥TV ≤ 1, we are inter-
ested in the concentration of the random variable Z =

∫
gdLH . Recall that the total

variation of a function g : R → R is defined by

∥∥g∥∥TV = sup
n=1,2,...

sup
x1<···<xn

n–1∑
i=1

| f (xi+1) – f (xi)|.

Remarkably, much can be said about Z without imposing any moment assumption
on the entries of the matrix. The argument is surprisingly simple. Indeed, for every
x = (x1, . . . , xn) such that xi ∈ Ci–1 × R for all i, denote byH(x) theHermitianmatrix
given by (H(x))i,j = xi,j for 1 ≤ j ≤ i ≤ n and define the function f by

f (x) =
∫

gdLH(x).

The random variable of interest Z is just f (H1, . . . ,Hn) and it remains to establish
the bounded differences property for f to get a concentration inequality of Z around
its mean. To this end, we apply the following deterministic rank inequality for spec-
tral measures (which relies on the Cauchy interlacing theorem, see Exercises 6.2 and
6.3 below). Let A and B denote Hermitian matrices. If one denotes by FA and FB the
distribution functions related to the spectral measures LA and LB, then

‖FA – FB‖∞ ≤ rank (A – B)
n

.
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Integrating by parts (noting that FA – FB tends to 0 at –∞ and +∞), one has∣∣∣∣∫ gdLA –
∫

gdLB

∣∣∣∣ = ∣∣∣∣∫ ( FA – FB) dg
∣∣∣∣ ≤ ‖FA – FB‖∞ ,

where the last inequality comes from the fact that the absolute total mass of the Stieljes
measure dg equals

∥∥g∥∥TV ≤ 1. Combining the two inequalities above, we find that for
every x and x′,

| f (x) – f (x′)| ≤ rank(H(x) – H(x′))
n

.

Now if x′ differs from x only in the i-th coordinate, the matrix H(x) – H(x′) has
all zero entries, except maybe for one row and one column which proves that
rank (H(x) – H(x′)) ≤ 2. This shows that f satisfies the bounded differences con-
dition with ci = 2/n for all i and, therefore, the bounded differences inequality tells
us that Z is a sub-Gaussian random variable with variance factor 1/n. Consequently
P
{
|Z – EZ| ≥ t

} ≤ 2e–nt2/2 for all t > 0.

6.2 More on BoundedDifferences

Next we show a more flexible variant of the bounded differences inequality of Theorem
6.2. It relaxes the bounded differences condition in that differences need not be bounded
by “hard” constants ci but rather by quantities that are allowed to depend on x, as
long as the sum of their squares are bounded. More precisely, we say that a function
f : X n → R has the x-dependent bounded differences property if there exists a constant
v > 0 such that for all x = (x1, . . . , xn) ∈ X n there exist n functions of n – 1 variables
c1, . . . , cn : X n–1 → [0,∞), such that for 1 ≤ i ≤ n,

sup
x′i∈X
x′′i ∈X

| f (x1, . . . , xi–1, x′′i , xi+1, . . . , xn) – f (x1, . . . , xi–1, x
′
i , xi+1, . . . , xn)|

≤ ci
(
x(i)
)
,

and (1/4)
∑n

i=1 c
2
i (x

(i)) ≤ v for all x ∈ X n. Here x(i) = (x1, . . . , xi–1, xi+1, . . . , xn) stands
for the (n – 1)-vector obtained by dropping the i-th component of x.

Clearly, the Efron–Stein inequality still implies that if f has the x-dependent bounded
differences property, then Z = f (X1, . . . ,Xn) satisfies Var (Z) ≤ v. The next sub-Gaussian
tail inequality extends Theorem 6.2 to such functions.

Theorem6.5 Assume that the function f satisfies the x-dependent bounded differences property
with constant v. Let Z = f (X1, . . . ,Xn) where the Xi are independent. Then for all t > 0,

P {Z – EZ ≥ t} ≤ e–t
2/(2v).
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Proof Since the proof is a simple extension of that for bounded differences inequality, we
will only sketch it. By the x-dependent bounded differences assumption, for fixed X(i),
conditionally, Z is a random variable whose range is in an interval of length at most
ci
(
X(i)

)
so by (6.3),

Ent(i)
(
eλZ
)

E(i)eλZ
≤ c2i

(
X(i)

)
λ2

8

and by (6.1),

Ent(eλZ) ≤
n∑
i=1

E

[(
c2i
(
X(i)

)
λ2

8

)
E(i)eλZ

]
=

n∑
i=1

E

[(
c2i
(
X(i)

)
λ2

8

)
eλZ
]
.

Since (1/4)
∑n

i=1 c
2
i (x

(i)) ≤ v, this inequality implies that

Ent
(
eλZ
)

EeλZ
≤ λ2v

2

and the announced inequality follows by using Herbst’s argument as we did at the end
of the proof of Theorem 6.2. �

6.3 Modified Logarithmic Sobolev Inequalities

In this section we present a simple inequality with the purpose of bringing sub-additivity
of entropy into a more manageable form, providing a versatile tool for deriving exponen-
tial concentration inequalities. This tool will help us prove inequalities under much more
flexible conditions than bounded differences. This is achieved by further developing the
right-hand side of Eq. (6.1). The obtained inequalities are closely related to the logarithmic
Sobolev inequalities that we met in Chapter 5, but there we were restricted to functions of
Bernoulli or Gaussian random variables.

Our first modified logarithmic Sobolev inequality follows from the sub-additivity and
the variational formulation of entropy. Throughout the entire chapter, we consider inde-
pendent random variablesX1, . . . ,Xn taking values in some spaceX , a real-valued function
f : X n → R, and the random variable Z = f (X1, . . . ,Xn). As in Section 3.1, we denote
Zi = fi(X(i)) = fi(X1, . . . ,Xi–1,Xi+1, . . . ,Xn) where fi : X n–1 → R is an arbitrary function.

Theorem 6.6 (A MODIFIED LOGARITHMIC SOBOLEV INEQUALITY) Let φ(x) =
ex – x – 1. Then for all λ ∈ R,

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZφ (–λ(Z – Zi))

]
.
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Proof We bound each term on the right-hand side of the sub-additivity of entropy (6.1).
To do this, recall that by the variational formula of entropy given in Corollary 4.17, for
any nonnegative random variable Y and for any u > 0,

E[Y log Y] – (EY) log(EY) ≤ E[Y log Y – Y log u – (Y – u)].

Weuse this bound conditionally. It implies that ifYi is a positive function of the random
variables X1, . . . ,Xi–1,Xi+1, . . . ,Xn, then

E(i)[Y log Y] –
(
E(i)Y

)
log

(
E(i)Y

)
≤ E(i) [Y(log Y – log Yi) – (Y – Yi)

]
.

Applying the above inequality to the variables Y = eλZ and Yi = eλZi , one obtains

E(i)[Y log Y] –
(
E(i)Y

)
log

(
E(i)Y

)
≤ E(i) [eλZφ(–λ(Z – Zi))

]
and the proof is completed by (6.1). �

6.4 Beyond Bounded Differences

Simplicity and generality make the bounded differences inequality attractive and it has
become a universal tool as witnessed by its countless applications. However, it is possible to
improve this simple inequality in various ways, and the entropy method provides a versatile
tool. In this section we first give a simple example that is quite easy to obtain from the mod-
ified logarithmic Sobolev inequalities of the previous section yet has numerous interesting
applications. Its proof is essentially identical to that of Theorem 5.3 but thanks to the gener-
ality of Theorem 6.6, we do not need to restrict ourselves to functions of Bernoulli random
variables.

Here we consider a general real-valued function of n independent random vari-
ables Z = f (X1, . . . ,Xn) and Zi denotes an X(i)-measurable random variable defined by
Zi = infx′i f (X1, . . . , x′i , . . . ,Xn).

Theorem 6.7 Assume that Z is such that there exists a constant v > 0 such that, almost surely,

n∑
i=1

(Z – Zi)2 ≤ v.

Then for all t > 0,

P {Z – EZ > t} ≤ e–t
2/(2v).

Proof The result follows easily from the modified logarithmic Sobolev inequality proved
in the previous section. Observe that for x > 0, φ(–x) ≤ x2/2, and therefore, for all
λ > 0, Theorem 6.6 implies
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λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ E

[
eλZ

n∑
i=1

λ2

2
(Z – Zi)2

]

≤ λ2v
2

EeλZ,

where we used the assumption of the theorem. The obtained inequality has the same
form as the one we already faced in the proof of Theorem 6.2 and the proof may be
finished in an identical way. �

By replacing f by –f in the theorem above, we see that if Z is such that

n∑
i=1

(Z – Zi)2 ≤ v

with Zi = supx′i f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn), then one obtains an analogous bound for
the lower tail

P {Z < EZ – t} ≤ e–t
2/(2v).

As a consequence, if the condition

n∑
i=1

(Z – Zi)2 ≤ v

is satisfied both for Zi = infx′i f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn) and for Zi =
supx′i f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn), one has the two-sided inequality

P
{
|Z – EZ| > t

} ≤ 2e–t
2/(2v).

To understand why this inequality is a significant step forward in comparison with
Theorem 6.2, simply observe that the conditions of Theorem 6.7 do not require that f
should have bounded differences. All they require is that

sup
x1,..., xn ,

x′1,..., x′n∈X

n∑
i=1

( f (x1, . . . , xn) – f (x1, . . . , xi–1, x′i , xi+1, . . . , xn))
2 ≤ v.

The quantity v may be interpreted as an upper bound for the Efron–Stein estimate of the
variance Var (Z). Many of the inequalities proved by the entropy method in this chapter
have a similar flavor: a sub-Gaussian (or sometimes sub-gamma) tail bound where the
role of the variance factor is played by a suitable upper bound based on the Efron–Stein
inequality.
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Note, however, that if f satisfies the boundeddifferences assumption (or the x-dependent
bounded differences assumption), then Theorems 6.2 and 6.5 provide better constants
in the exponent. To illustrate why Theorem 6.7 is an essential improvement, recall the
example of the largest eigenvalue of a random symmetric matrix, as described in Example
3.14. For this example Theorem 6.5 fails to provide a meaningful inequality.

Example 6.8 (THE LARGEST EIGENVALUE OF A RANDOM SYMMETRIC MATRIX)
As in Example 3.14, we consider a random symmetric real matrix A with entries
Xi,j, 1 ≤ i ≤ j ≤ nwhere theXi,j are independent randomvariables with absolute value
bounded by 1. Let Z = λ1 denote the largest eigenvalue of A. In Section 3.14, we have
already seen that, almost surely,∑

1≤i≤j≤n

(Z – Zi,j)2 ≤ 16.

We used this estimate and the Efron–Stein inequality to conclude that Var (Z) ≤ 16.
Using Theorem 6.7, we get, without further work, the sub-Gaussian tail estimate

P {Z > EZ + t} ≤ e–t
2/32.

Clearly, the bounded differences inequality is useless here as it is impossible to handle
the individual differences Z – Z′

i,j in a meaningful way, while the sum of their squares is
bounded by 16. In Section 8.2 we return to this example, re-prove the exponential tail
inequality with a different method and derive a corresponding lower-tail inequality.

6.5 Inequalities for the Lower Tail

In the previous section we showed that the condition

n∑
i=1

(
f (X1, . . . ,Xn) – inf

x′i
f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn)

)2

≤ v

guarantees a sub-Gaussian behavior for the upper tail probabilities P{Z > EZ + t}. To
obtain an analogous bound for the lower tail probabilities P{Z < EZ – t}, however, one
needs a condition of the form

n∑
i=1

(
f (X1, . . . ,Xn) – sup

x′i
f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn)

)2

≤ v.

In many interesting cases, only one of the two quantities can be controlled easily, although
one would like to handle both upper and lower tails. This is possible under an additional
condition of bounded differences. Here we show a simple version of such a result. Note
that it is not quite a sub-Gaussian but rather a sub-Poisson bound. As we point out in sub-
sequent sections, there are some important applications in which sub-Gaussian lower tail
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bounds hold. In particular, in Section 6.11 below, we show a general sub-Gaussian lower
tail inequality under some additional conditions (see Corollary 6.24). For more discussion
and related results, we refer to Chapters 7, 9, and 15.

Theorem 6.9 Assume that X1, . . . ,Xn are independent and Z = f (X1, . . . ,Xn) is such that
there exists a constant v > 0 such that, almost surely,

n∑
i=1

(Zi – Z)2 ≤ v

where Zi = supx′i f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn). Assume also that Zi – Z ≤ 1 almost
surely for all i = 1, . . . , n. Then for all t > 0,

P {Z – EZ > t} ≤ e–vh(t/v) ≤ e–t
2/(2(v+t/3))

where h(x) = (1 + x) log(1 + x) – x for x > –1.

Proof Our starting point is, once again, the modified logarithmic Sobolev inequality of
Theorem 6.6. In order to bound the right-hand side of that inequality, we need
to bound E

[
eλZφ (–λ(Z – Zi))

]
with Zi defined above. The key observation is that

φ(x)/x2 = (ex – x – 1)/x2 is an increasing function of x and therefore, for any λ > 0,

φ (–λ(Z – Zi))
λ2(Z – Zi)2

≤ φ(λ)
λ2

where we used the fact that Zi – Z ≤ 1. Thus, by Theorem 6.6, for λ > 0, we have

d
dλ

(
1
λ
logEeλZ

)
≤ 1

λ2EeλZ

n∑
i=1

E
[
eλZφ (–λ(Z – Zi))

]
≤ φ(λ)

EeλZ
E

[
eλZ

n∑
i=1

(Z – Zi)2
]

≤ vφ(λ)

where we used the hypothesis of the theorem. The proof can now be finished as in
Theorem 6.7, by integrating the bound above. We thus obtain

Eeλ(Z–EZ) ≤ eφ(λ)v.

The upper bound is just the moment-generating function of a centered Poisson(v)
random variable and the tail bounds follow from the calculations shown in Sections
2.2 and 2.7. �
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Of course, by replacing f by –f , we get the analog result that if
n∑
i=1

(
f (X1, . . . ,Xn) – inf

x′i
f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn)

)2

≤ v

(i.e. under the same condition as in Theorem 6.7) and also

f (X1, . . . ,Xn) – inf
x′i
f (X1, . . . ,Xi–1, x′i ,Xi+1, . . . ,Xn) ≤ 1,

then for all 0 < t,

P {Z < EZ – t} ≤ e–t
2/(2(v+t/3)).

This bound explains the title of the section.

6.6 Concentration of Convex Lipschitz Functions

In Section 5.4 we proved the fundamental result that any Lipschitz function of a canonical
Gaussian vector has sub-Gaussian tails. The entropy method presented in the previous sec-
tions allows us to extend this to much more general product distributions, though we need
an extra convexity condition on the Lipschitz function. This is analogous to the relation-
ship of the “convex” Poincaré inequality of Section 3.5 to the Gaussian Poincaré inequality
presented in Section 3.7. We state the result for functions of n independent random vari-
ables taking values in [0, 1]n. However, the same proof extends easily to functions of n
independent vector-valued random variables under appropriate Lipschitz and convexity
assumptions (see Exercise 6.5).

Recall that f : [0, 1]n → R is said to be separately convex if, for every i = 1, . . . , n, it is a
convex function of i-th variable if the rest of the variables are fixed.

Theorem 6.10 Let X1, . . . ,Xn be independent random variables taking values in the
interval [0, 1] and let f : [0, 1]n → R be a separately convex function such that
| f (x) – f (y)| ≤ ‖x – y‖ for all x, y ∈ [0, 1]n. Then Z = f (X1, . . . ,Xn) satisfies, for all
t > 0,

P{Z > EZ + t} ≤ e–t
2/2.

Proof We may assume without loss of generality that the partial derivatives of f exist.
(Otherwise one may approximate f by a smooth function via a standard argu-
ment.) Theorem 6.7 suffices to bound the random variable

∑n
i=1(Z – Zi)2 where

Zi = infx′i f (X1, . . . , x′i , . . . ,Xn). However, we have already shown in the proof of
Theorem 3.17 that

n∑
i=1

(Z – Zi)2 ≤ ‖∇( f (X))‖2 ≤ 1

where at the last step we used the Lipschitz property of f . Therefore, Theorem 6.7 is
applicable with v = 1. �
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Note that a naive bound using the Lipschitz condition would only give the bound∑n
i=1

(
f (X) – f (X(i))

)2 ≤ 4n. The convexity assumption provides an immense improve-
ment over this simple bound.

Example 6.11 (THE LARGEST SINGULAR VALUE OF A RANDOM MATRIX) Consider
again Example 3.18, that is, let Z be the largest singular value of an m× nmatrix with
independent entriesXi,j (i = 1, . . . ,m, j = 1, . . . , n) taking values in [0, 1]. As we poin-
ted out, Z is a convex function of the Xi,j, which is also Lipschitz, so Theorem 6.10
implies

P{Z > EZ + t} ≤ e–t
2/2.

Here, we assumed that all entries of the matrix A are independent. This assumption
may be weakened at the price of obtaining a weaker sub-Gaussian bound. The same
argument may be used to establish concentration properties of the largest singular
value of amatrix whose columns are independent vectors, but the components of these
vectors are not necessarily independent (see Exercise 6.6).

6.7 Exponential Inequalities for Self-Bounding Functions

In this section we revisit self-bounding functions introduced in Section 3.3. Recall that
a function f : X n → R is said to have the self-bounding property if, for some functions
fi : X n–1 → R, for all x = (x1, . . . , xn) ∈ X n, and for all i = 1, . . . , n,

0 ≤ f (x) – fi
(
x(i)
)
≤ 1

and

n∑
i=1

(
f (x) – fi

(
x(i)
))

≤ f (x),

where, as usual, x(i) = (x1, . . . , xi–1, xi+1, . . . , xn). If X1, . . . ,Xn are independent random
variables taking values inX and Z = f (X1, . . . ,Xn) for a self-bounding function f , then the
Efron–Stein inequality implies Var (Z) ≤ EZ. We have seen several interesting examples of
self-bounding functions, including various configuration functions, Rademacher averages
(Section 3.3), and the combinatorial entropies introduced in Section 4.5. Here, building
on the modified logarithmic Sobolev inequality of Theorem 6.6, we obtain exponential
concentration bounds for self-bounding functions.

To state themain result of this section, recall the definition of the following two functions
that we have already seen in Bennett’s inequality and in the modified logarithmic Sobolev
inequalities above:

h(u) = (1 + u) log(1 + u) – u, u ≥ –1
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and

φ(v) = sup
u≥–1

(uv – h(u)) = ev – v – 1.

Theorem 6.12 Assume that Z satisfies the self-bounding property. Then for every λ ∈ R,

logEeλ(Z–EZ) ≤ φ(λ)EZ.

Moreover, for every t > 0,

P {Z ≥ EZ + t} ≤ exp
(
–h
(

t
EZ

)
EZ
)

and for every 0 < t ≤ EZ,

P {Z ≤ EZ – t} ≤ exp
(
–h
(
–

t
EZ

)
EZ
)
.

By recalling that h(u) ≥ u2/(2 + 2u/3) for u ≥ 0 (we have already used this in the proof
of Bernstein’s inequality; see Exercise 2.8) and observing that h(u) ≥ u2/2 for u ≤ 0, we
obtain the following immediate, perhaps more transparent, corollaries: for every t > 0,

P {Z ≥ EZ + t} ≤ exp
(
–

t2

2EZ + 2t/3

)
and for every 0 < t ≤ EZ,

P {Z ≤ EZ – t} ≤ exp
(
–

t2

2EZ

)
.

In these sub-gamma tail bounds the variance factor EZ is the Efron–Stein upper bound of
the variance Var (Z).

Proof We first invoke the modified logarithmic Sobolev inequality (Theorem 6.6).
Since the function φ is convex with φ(0) = 0, for any λ and any u ∈ [0, 1] ,
φ(–λu) ≤ uφ(–λ). Thus, since Z – Zi ∈ [0, 1], we have, for every λ,
φ(–λ (Z – Zi)) ≤ (Z – Zi)φ(–λ) and therefore, Theorem 6.6 and the condition∑n

i=1(Z – Zi) ≤ Z imply that

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ E

[
φ(–λ)eλZ

n∑
i=1

(Z – Zi)

]
≤ φ(–λ)E

[
ZeλZ

]
.
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Define, for λ ∈ R, F(λ) = Eeλ(Z–EZ). Then the inequality above becomes

[
λ – φ(–λ)

] F′(λ)
F(λ)

– log F(λ) ≤ φ(–λ)EZ,

which, writingG(λ) = log F(λ), implies(
1 – e–λ

)
G′(λ) – G(λ) ≤ φ(–λ)EZ.

For λ ≥ 0 this inequality is equivalent to(
G(λ)
eλ – 1

)′
≤ EZ ·

(
–λ

eλ – 1

)′
.

The last differential inequality is straightforward to solve and we obtain, for
λ > λ0 > 0,

G(λ) ≤ (
eλ – 1

) (G(λ0)
eλ0 – 1

+ EZ
(

λ0

eλ0 – 1
–

λ

eλ – 1

))
.

Letting λ0 tend to 0 and observing that limλ0→0 λ0/(eλ0 – 1) = 1 and that, by
l’Hospital’s rule, limλ0→0 G(λ0)/(eλ0 – 1) = E[Z – EZ] = 0, for λ ≥ 0, we get

G(λ) ≤ φ(λ)EZ.

Proceeding in a similar way for λ ≤ 0, we obtain the first inequality of the theorem.
On the right-hand side we recognize the moment-generating function of a centered

Poisson random variable with parameter EZ. The probability bounds are the cor-
responding Poisson tail inequalities and are obtained by Chernoff’s bounding, as
calculated in Section 2.2. �

Theorem 6.12 provides concentration inequalities for any function satisfying the self-
bounding property. In Sections 3.3 and 4.5 several examples of such functions are discussed.
Here we mention one more example.

Example 6.13 (MAXIMAL DEGREE IN A RANDOM GRAPH) Consider the Erdős–Rényi
G(n, p) model of a random graph. In this model a graph of n vertices is obtained if each
one of the m =

(n
2

)
possible edges is selected, independently, with probability p. The

degree of a vertex is the number of edges adjacent to that vertex. Note that the degree of
any vertex is a binomial (n – 1, p) randomvariable. LetD denote themaximal degree of
any vertex in the graph. Clearly,D is a configuration function, soTheorem6.12 applies.
See Exercise 6.14 for properties ofD.

Next we write out explicitly what the theorem implies for combinatorial entropies,
defined in Section 4.5.
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Theorem 6.14 Assume that h(x) = logb |tr(x)| is a combinatorial entropy such that for all
x ∈ X n and i ≤ n,

h(x) – h
(
x(i)

)
≤ 1.

If X = (X1, . . . ,Xn) is a vector of n independent random variables taking values inX , then
the random combinatorial entropy Z = h(X) satisfies

P {Z ≥ EZ + t} ≤ exp
(
–

t2

2EZ + 2t/3

)
,

and

P {Z ≤ EZ – t} ≤ exp
(
–

t2

2EZ

)
.

Moreover,

E logb |tr(X)| ≤ logb E|tr(X)| ≤
b – 1
log b

E logb |tr(X)|.

Note that the left-hand side of the last statement follows from Jensen’s inequality, while
the right-hand side follows by taking λ = log b in the first inequality of Theorem 6.12. One
of the examples of combinatorial entropies, defined in Section 4.5, is VC entropy. For the
random VC entropy T(X), we obtain

E log2 T(X) ≤ log2 ET(X) ≤ (log2 e)E log2 T(X).

This last statement shows that the expected VC entropy E log2 T(X) and the annealed
VC entropy log2 ET(X) are tightly connected, regardless of the class of sets A and the
distribution of the Xi’s.

The same inequality holds for the logarithm of the number of increasing subsequences
of a random permutation (see Section 4.5 for the definitions).

6.8 SymmetrizedModified Logarithmic Sobolev Inequalities

One of the most useful forms of the Efron–Stein inequality establishes an upper bound for
the variance of Z = f (X1, . . . ,Xn) in terms of the behavior of the random variables Z – Z′

i
where Z′

i = f (X1, . . . ,X′
i , . . . ,Xn) is obtained by replacing the variable Xi by an independ-

ent copy X′
i (see Theorem 3.1). The purpose of the next few sections is the search for

exponential concentration inequalities involving the differences Z – Z′
i . The following sym-

metrized modified logarithmic Sobolev inequality is at the basis of such exponential tail
inequalities.
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Theorem 6.15 (SYMMETRIZED MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES)
For all λ ∈ R,

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZφ (–λ(Z – Z′

i))
]

where φ(x) = ex – x – 1. Moreover, denoting τ(x) = x(ex – 1), for all λ ∈ R,

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZτ(–λ(Z – Z′

i)+)
]
,

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZτ(λ(Z′

i – Z)+)
]
.

Proof The first inequality is proved exactly as for Theorem 6.6, simply by noting that, like
Zi, Z′

i is also independent of Xi. To prove the second and third inequalities, write

eλZφ (–λ(Z – Z′
i)) = eλZφ (–λ(Z – Z′

i)+) + eλZφ (λ(Z′
i – Z)+) .

By symmetry, the conditional expectation of the second term, conditioned on
X1, . . . ,Xi–1,Xi+1, . . . ,Xn, may be written as

E(i) [eλZφ (λ(Z′
i – Z)+)

]
= E(i)

[
eλZ

′
iφ (λ(Z – Z′

i)+)
]

= E(i)
[
eλZe–λ(Z–Z

′
i)φ (λ(Z – Z′

i)+)
]
.

Summarizing, we have

E(i) [eλZφ (–λ(Z – Z′
i))
]

= E(i)
[(

φ (–λ(Z – Z′
i)+) + e–λ(Z–Z

′
i)φ (λ(Z – Z′

i)+)
)
eλZ
]
.

The second inequality of the theorem follows simply by noting that φ(x) + exφ(–x) =
x(ex – 1) = τ(x). The last inequality follows similarly. �

6.9 Exponential Efron–Stein Inequalities

Recall that by the Efron–Stein inequality, if X = (X1, . . . ,Xn) is a vector of independent
random variables, then the variance of Z = f (X) is bounded as

Var (Z) ≤ 1
2

n∑
i=1

E
[
(Z – Z′

i)
2
]
.
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If we denote by E′[·] = E[·|X] expectation with respect to the variables X′
1, . . . ,X

′
n only,

then by introducing the random variables

V+ =
n∑
i=1

E′ [(Z – Z′
i)
2
+
]

and

V– =
n∑
i=1

E′ [(Z – Z′
i)
2
–
]
,

the Efron–Stein inequality can be written in either one of the equivalent forms

Var (Z) ≤ EV+ and Var (Z) ≤ EV–.

The message of the next theorem is that upper bounds for the moment-generating func-
tion of the random variables V+ and V– may be translated into exponential concentration
inequalities for Z. In a sense, these may be understood as exponential versions of the
Efron–Stein inequality.

Theorem 6.16 Let Z = f (X1, . . . ,Xn) be a real-valued function of n independent random
variables. Let θ , λ > 0 be such that θλ < 1 and EeλV+/θ < ∞. Then

logEeλ(Z–EZ) ≤ λθ

1 – λθ
logEeλV

+/θ .

Next assume that Z is such that Z′
i – Z ≤ 1 for every 1 ≤ i ≤ n. Then for all λ ∈ (0, 1/2),

logEeλ(Z–EZ) ≤ 2λ
1 – 2λ

logEeλV
–
.

Proof The proof of the first statement is based on the second inequality of Theorem 6.15.
To apply this inequality, we need to establish appropriate upper bounds for the quant-
ity

∑n
i=1 E

[
eλZτ(–λ(Z – Z′

i)+)
]
appearing on the right-hand side. By noting that

τ(–x) ≤ x2 for all x ≥ 0, we see that it suffices to bound

n∑
i=1

E
[
eλZλ2(Z – Z′

i)
2
+
]
= λ2E

[
V+eλZ

]
.

In previous applications of the entropy method, our strategy was to relate E
[
V+eλZ

]
to quantities expressed as a functional of the random variable Z. Here our approach
is different: we bound the right-hand side by something that involves the moment-
generating function of Z and a functional of V+. In order to do this, we “decouple” the
random variables eλZ and V+.
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The duality formula of the entropy given in Theorem 4.13 serves as an ideal tool for
this purpose. Recall that the duality formula implies that for any random variable W
such that EeW < ∞,

E
[(
W – logEeW

)
eλZ
] ≤ Ent(eλZ),

or equivalently,

E
[
WeλZ

] ≤ E
[
eλZ
]
logE

[
eW
]
+ Ent(eλZ).

A natural choice for W is λV+ but it is advantageous to introduce a free para-
meter θ > 0 and apply the “decoupling” inequality above withW = λV+/θ . Now the
symmetrized modified logarithmic Sobolev inequality becomes

Ent(eλZ) ≤ λθ
(
E
[
eλZ
]
logE

[
eλV

+/θ ] + Ent(eλZ)
)
.

Rearranging, and writing ρ(λ) = logEeλV+
for the logarithmic moment generating

function of V+, we have

(1 – λθ) Ent(eλZ) ≤ λθρ(λ/θ)EeλZ

which, of course, is only meaningful if λθ < 1. If, as before, we let G(λ) =
logEeλ(Z–EZ), then the previous inequality becomes

λG′(λ) – G(λ) ≤ λθ

1 – λθ
ρ(λ/θ).

This differential inequality is of the form that we have already encountered and indeed,
by Lemma 6.25,

G(λ) ≤ λθ

∫ λ

0

ρ(u/θ)
u(1 – uθ)

du.

Since ρ(0) = 0, the convexity of ρ implies that ρ(u/θ)/(u(1 – uθ)) is a non-
decreasing function and therefore

G(λ) ≤ θλρ(λ/θ)
1 – λθ

,

and the first inequality of the theorem follows.
To prove the second statement of the theorem, we start with the last inequality of

Theorem 6.15 which may be written as

Ent
(
eλZ
) ≤ n∑

i=1

E

[
eλZλ2(Z′

i – Z)
2
+
eλ(Z′

i–Z)+ – 1
λ(Z′

i – Z)+

]
.
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Since (ex – 1)/x is an increasing function, the conditions Z′
i – Z ≤ 1 and λ < 1/2

imply that

Ent
(
eλZ
) ≤ λ2

n∑
i=1

E
[
eλZ(Z′

i – Z)
2
+2
(
e1/2 – 1

)] ≤ 2λ2E
[
eλZV–] .

The rest of the proof is the same as for the first inequality of the theorem. �

6.10 AModified Logarithmic Sobolev Inequality
for the Poisson Distribution

In the previous sections we derived modifications of the Gaussian logarithmic Sobolev
inequality that allowed us to prove concentration inequalities for functions of independ-
ent random variables of arbitrary distribution. For certain specific distributions, apart from
the normal distribution, sharper inequalities are available. Here we show such a “modified
logarithmic Sobolev inequality” for Poisson random variables. Recall that X has a Poisson
distribution with parameter μ > 0 if X takes nonnegative integer values and for every
k = 0, 1, . . . , P{X = k} = μke–μ/k!.

If f is a real-valued function defined on the set of nonnegative integers N, then define
the discrete derivative of f at x ∈ N by Df (x) = f (x + 1) – f (x). If one wanted to estab-
lish a “discrete” analog of the Gaussian logarithmic Sobolev inequality, one would hope
to prove that all functions f : N → R, Ent( f 2(X)) ≤ κE[|Df (X)|2] for some constant
κ . Unfortunately, such a result is not true if X is Poisson because the supremum of
Ent(( f (X))2)/E[(Df (X))2] is infinite.

However, Theorem 6.15 may be used to prove the following modified logarithmic
Sobolev inequalities for Poisson distributions, which is a refinement of the PoissonPoincaré
inequality of Exercise 3.21.

Theorem 6.17 (POISSON LOGARITHMIC SOBOLEV INEQUALITY) Let X be a Poisson
random variable and let f : N → (0,∞). Then

Ent( f (X)) ≤ (EX)E
[
Df (X)D log f (X)

]
,

and

Ent[ f (X)] ≤ (EX)E
[
|Df (X)|2

f (X)

]
.

The theoremmay be proved in a way similar to that with which we proved the Gaussian
logarithmic Sobolev inequality: first we establish an inequality for the Bernoulli distribu-
tion (see the lemma below) and then use the convergence of the binomial distribution to
Poisson. We leave the details of the proof to the reader.

Lemma 6.18 (MODIFIED LOGARITHMIC SOBOLEV INEQUALITIES FOR BERNOULLI
DISTRIBUTIONS) For any function f : {0, 1} → (0,∞), let ∇f (x) = f (1 – x) – f (x).
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Let p ∈ (0, 1), and let X be a Bernoulli random variable with parameter p (i.e.,
P{X = 1} = 1 – P{X = 0} = p). Then

Ent( f (X)) ≤ p(1 – p)E
[∇f (X)∇ log f (X)

]
and

Ent( f (X)) ≤ p(1 – p)E
[
|∇f (X)|2

f (X)

]
.

Proof We only prove the first inequality. The proof of the second is left as an exercise. Let
X′ be an independent copy ofX. Let q = 1 – p. By the first inequality of Theorem 6.15,
taking λ = 1 and Z = log f (X),

Ent( f (X)) ≤ E
[
f (X)φ(log( f (X′)/f (X)))

]
= E

[
f (X′) – f (X) – f (X)(log( f (X′)) – log( f (X)))

]
= pq

[
–f (1)(log( f (0) – log f (1)))

]
+ pq

[
–f (0)(log( f (1) – log f (0)))

]
= pqE

[∇f (X)∇ log f (X)
]
. �

It is easy to deduce fromTheorem 6.17 that the square root of a Poisson random variable
X satisfies

logEeλ(
√
X–E

√
X) ≤ v(eλ – 1)

where v = (EX)E[1/(4X + 1)]. This represents an improvement over what can be
obtained from Theorem 6.29 below (see Exercise 6.12).

6.11 Weakly Self-Bounding Functions

Self-bounding functions, discussed in Section 6.7, appear naturally in numerous applic-
ations including configuration functions and combinatorial entropies. Theorem 6.12 is
quite satisfactory as it cannot be improved in this generality and its proof is rather simple.
However, one often faces functions that only satisfy slightly weaker conditions. A prime
example, presented in Chapter 7, is the squared “convex distance.” In order to handle this
example, as well as various other naturally emerging cases, we generalize the definition of
self-bounding functions in two different ways. This section is dedicated to inequalities for
such generalized self-bounding functions. The proofs are variants of the entropy method,
all based on themodified logarithmic Sobolev inequality of Theorem 6.6. However, the res-
ulting differential inequality for the moment-generating function is not always as easy to
solve as in Theorems 6.7 and 6.12, and most of our effort is devoted to the solution of these
differential inequalities.
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We distinguish two notions of generalized self-bounding functions. In both of the
following definitions, a and b are nonnegative constants.

A nonnegative function f : X n → [0,∞) is called weakly (a, b)-self-bounding if there
exist functions fi : X n–1 → [0,∞) such that for all x ∈ X n,

n∑
i=1

(
f (x) – fi

(
x(i)
))2 ≤ af (x) + b.

On the other hand, we say that a function f : X n → [0,∞) is strongly (a, b)-self-bounding
if there exist functions fi : X n–1 → [0,∞) such that for all i = 1, . . . , n and all x ∈ X n,

0 ≤ f (x) – fi
(
x(i)
)
≤ 1,

and

n∑
i=1

(
f (x) – fi

(
x(i)
))

≤ af (x) + b.

Clearly, a self-bounding function is strongly (1, 0)-self-bounding and every strongly (a, b)-
self-bounding function is weakly (a, b)-self-bounding. In both cases, the Efron–Stein
inequality implies Var (Z) ≤ aEZ + b. Indeed, this quantity appears as a variance factor in
the exponential bounds established below.

We present three inequalities. The simplest is an inequality for the upper tails of weakly
(a, b)-self-bounding functions.

Theorem6.19 Let X = (X1, . . . ,Xn) be a vector of independent random variables, each taking
values in ameasurable setX , let a, b ≥ 0 and let f : X n → [0,∞) be a weakly (a, b)-self-
bounding function. Let Z = f (X). If, in addition, fi(x(i)) ≤ f (x) for all i ≤ n and x ∈ X n,
then for all 0 ≤ λ ≤ 2/a,

logEeλ(Z–EZ) ≤ (aEZ + b)λ2

2(1 – aλ/2)

and for all t > 0,

P {Z ≥ EZ + t} ≤ exp
(
–

t2

2 (aEZ + b + at/2)

)
.

Proof Once again, our starting point is the modified logarithmic Sobolev inequality. Write
Zi = fi(X(i)). Themain observation is that for x ≥ 0,φ(–x) ≤ x2/2. SinceZ – Zi ≥ 0,
for λ > 0, by further bounding the right-hand side of the inequality of Theorem 6.6,
we obtain
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λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ λ2

2
E

[
eλZ

n∑
i=1

(Z – Zi)
2

]

≤ λ2

2
E
[
(aZ + b)eλZ

]
where we use the assumption that f is weakly (a, b)-self-bounding. Introducing
G(λ) = logEeλ(Z–EZ), the inequality obtained above may be re-arranged to read

(
1
λ
–
a
2

)
G′(λ) –

G(λ)
λ2 ≤ v

2

where we write v = aEZ + b.
To finish the proof, simply observe that the left-hand side is just the derivative of the

function (1/λ – a/2)G(λ). Using the fact thatG(0) = G′(0) = 0, and thatG′(λ) ≥ 0
for λ > 0, integrating this differential inequality leads to

G(λ) ≤ vλ2

2(1 – aλ/2)
for all λ ∈ [0, 2/a).

This shows that Z – EZ is a sub-gamma random variable with variance factor
v = aEZ + b and scale parameter a/2. The tail bound follows from the calculations
shown is Section 2.4. �

The next theorem provides lower tail inequalities for weakly (a, b)-self-bounding
functions. This will become essential for proving the convex distance inequality in
Section 7.4.

Theorem 6.20 Let X = (X1, . . . ,Xn) be a vector of independent random variables, each tak-
ing values in a measurable set X , let a, b ≥ 0 and let f : X n → [0,∞) be a weakly
(a, b)-self-bounding function. Let Z = f (X) and define c = (3a – 1)/6. If, in addition,
f (x) – fi(x(i)) ≤ 1 for each i ≤ n and x ∈ X n, then for 0 < t ≤ EZ,

P {Z ≤ EZ – t} ≤ exp
(
–

t2

2 (aEZ + b + c–t)

)
.

Note that if a ≥ 1/3, then the left tail is sub-Gaussian with variance proxy aEZ + b, while
for a < 1/3 we will only obtain a sub-gamma tail bound.

The proof of this theorem is shown below, together with the proof of the following upper
tail inequality for strongly (a, b)-self-bounding functions.
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Theorem6.21 Let X = (X1, . . . ,Xn) be a vector of independent random variables, each taking
values in a measurable set X , let a, b ≥ 0 and let f : X n → [0,∞) be a strongly (a, b)-
self-bounding function. Let Z = f (X) and define c = (3a – 1)/6. Then for all λ ≥ 0,

logEeλ(Z–EZ) ≤ (aEZ + b)λ2

2(1 – c+λ)

and for all t > 0,

P {Z ≥ EZ + t} ≤ exp
(
–

t2

2 (aEZ + b + c+t)

)
.

In this upper tail bound we observe a similar phenomenon as in Theorem 6.20 but with
a different sign. If a ≤ 1/3, then the upper tail of a strongly (a, b)-self-bounding function is
purely sub-Gaussian.

Our starting point is once again the modified logarithmic Sobolev inequality of
Theorem 6.6.

If λ ≥ 0 and f is strongly (a, b)-self-bounding, then, using Z – Zi ≤ 1 and the fact that
for all x ∈ [0, 1], φ(–λx) ≤ xφ(–λ),

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ φ(–λ)E

[
eλZ

n∑
i=1

(Z – Zi)

]
≤ φ(–λ)E

[
(aZ + b) eλZ

]
.

For any λ ∈ R, define G(λ) = logEe(λZ–EZ). Then the previous inequality may be written
as the differential inequality[

λ – aφ(–λ)
]
G′(λ) – G(λ) ≤ vφ(–λ), (6.4)

where v = aEZ + b.
On the other hand, if λ ≤ 0 and f is weakly (a, b)-self-bounding, then since φ(x)/x2 is

nondecreasing overR+, φ(–λ(Z – Zi)) ≤ φ(–λ)(Z – Zi)2 so

λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ φ(–λ)E

[
eλZ

n∑
i=1

(Z – Zi)2
]

≤ φ(–λ)E
[
(aZ + b)eλZ

]
.

This again leads to the differential inequality (6.4) but this time for λ ≤ 0.
When a = 1, this differential inequality can be solved exactly as we saw it in the proof of

Theorem 6.12, and one obtains the sub-Poissonian inequality

G(λ) ≤ vφ(λ).
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However, when a �= 1, it is not obvious what kind of bounds for G should be expected. If
a > 1, then λ – aφ(–λ) becomes negative when λ is large enough. Since both G′(λ) and
G(λ) are nonnegative when λ is nonnegative, (6.4) becomes trivial for large values of λ.
Hence, at least when a > 1, there is no hope to derive Poissonian bounds from (6.4) for
positive values of λ (i.e. for the upper tail).

The following lemma, proved in Section 6.12 below, is the key to the proof of both
Theorems 6.20 and 6.21. It shows that if f satisfies a self-bounding property, then on the
relevant interval, the logarithmic moment-generating function of Z – EZ is upper bounded
by v times a functionGγ defined by

Gγ (λ) =
λ2

2(1 – γ λ)
for every λ such that γ λ < 1

where γ ∈ R is a real-valued parameter. In the lemma below we mean c–1+ = ∞
(resp. c–1– = ∞) when c+ = 0 (resp. c– = 0).

Lemma 6.22 Let a, v > 0 and let G be a solution of the differential inequality

[λ – aφ (–λ)]H′ (λ) – H(λ) ≤ vφ (–λ) .

Define c = (a – 1/3)/2. Then, for every λ ∈ (0, c–1+ )

G(λ) ≤ vGc+ (λ)

and for every λ ∈ (–θ , 0)

G(λ) ≤ vG–c– (λ)

where θ = c–1–
(
1 –

√
1 – 6c–

)
if c– > 0 and θ = a–1 whenever c– = 0.

The proof is given in the next section. Equipped with this lemma, it is now easy to obtain
Theorems 6.20 and 6.21.

Proof of Theorem 6.20. We have to check that the condition λ > –θ is harmless. Since
θ < c–1– , by continuity, for every t > 0,

sup
u∈(0,θ)

(
tu –

u2v
2 (1 – c–u)

)
= sup

u∈(0,θ]

(
tu –

u2v
2 (1 – c–u)

)
.

Note that we are only interested in values of t that are smaller than EZ ≤ v/a. Now the
supremum of

tu –
u2v

2 (1 – c–u)

as a function of u ∈ (0, c–1– ) is achieved either at ut = t/v (if c– = 0) or at
ut = c–1–

(
1 – (1 + (2tc–/v))–1/2

)
(if c– > 0).
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It is time to take into account the restriction t ≤ v/a. In the first case, when ut = t/v,
it implies that ut ≤ a–1 = θ , while in the second case, since a = (1 – 6c–) /3 it implies
that 1 + (2tc–/v) ≤ (1 – 6c–)–1 and therefore ut ≤ c–1–

(
1 –

√
1 – 6c–

)
= θ . In both

cases ut ≤ θ which means that for every t ≤ v/a

sup
u∈(0,θ]

(
tu –

u2v
2 (1 – c–u)

)
= sup

u∈(0,c–1– )

(
tu –

u2v
2 (1 – c–u)

)
and the result follows. �

Proof of Theorem 6.21. The upper-tail inequality for strongly (a, b)-self-bounding func-
tions follows from Lemma 6.22 and Markov’s inequality by routine calculations,
exactly as in the proof of Bernstein’s inequality when c+ > 0, and it is straightforward
when c+ = 0. �

Example 6.23 (THE SQUARE OF A REGULAR FUNCTION) To illustrate the use of the
results of this section, consider a function g : X n → R and assume that there exists a
constant v > 0 and that there are measurable functions gi : X n–1 → R such that for
all x ∈ X n, g(x) ≥ gi(x(i)),

n∑
i=1

(
g(x) – g

(
x(i)
))2 ≤ v.

We term such a function v-regular. If X = (X1, . . . ,Xn) ∈ X n is a vector of independ-
entX -valued random variables, then by Theorem 6.7, for all t > 0,

P
{
g(X) ≥ Eg(X) + t

} ≤ e–t
2/(2v).

Even though Theorem 6.7 provides an exponential inequality for the lower tail, it
fails to give an analogous sub-Gaussian bound for P

{
g(X) ≤ Eg(X) – t

}
. Here we

show how Theorem 6.20 may be used to derive lower-tail bounds under an additional
bounded-differences condition for the square of g.

Corollary 6.24 Let g : X n → R be a v-regular function such that for all x ∈ X n and
i = 1, . . . , n, g(x)2 – gi(x(i))2 ≤ 1. Then for all t ≥ 0,

P
{
g(X)2 ≤ E

[
g(X)2

]
– t
} ≤ exp

(
–t2

8vE
[
g(X)2

]
+ t(4v – 1/3)–

)
.

In particular, if g is nonnegative and v ≥ 1/12, then for all 0 ≤ t ≤ Eg(X),

P
{
g(X) ≤ Eg(X) – t

} ≤ e–t
2/(8v).

Proof Introduce f (x) = g(x)2 and fi(x(i)) = gi(x(i))2. Then

0 ≤ f (x) – fi(x(i)) ≤ 1.



WEAK L Y S E L F - BOUND ING FUNCT ION S | 195

Moreover,

n∑
i=1

(
f (x) – fi

(
x(i)

))2
=

n∑
i=1

(
g(x) – gi

(
x(i)

))2 (
g(x) + gi

(
x(i)
))2

= 4g(x)2
n∑
i=1

(
g(x) – gi

(
x(i)
))2

≤ 4vf (x)

and therefore f is weakly (4v, 0)-self-bounding. This means that Theorem 6.20 is
applicable and this is how the first inequality is obtained.

The second inequality follows from the first by noting that

P
{
g(X) ≤ Eg(X) – t

} ≤ P
{
g(X)

√
E
[
g(X)2

] ≤ E
[
g(X)2

]
– t
√
E
[
g(X)2

]}
≤ P

{
g(X)2 ≤ E

[
g(X)2

]
– t
√
E
[
g(X)2

]}
,

and now the first inequality may be applied. �

For a more concrete class of applications, consider a nonnegative separately convex
Lipschitz function g defined on [0, 1]n. If X = (X1, . . . ,Xn) are independent random
variables taking values in [0, 1], then by Theorem 6.10,

P{g(X) – Eg(X) > t} ≤ e–t
2/2.

Now we may derive a lower-tail inequality for g, under the additional assumption that g2
takes its values in an interval of length 1. Indeed, without loss of generality we may assume
that g is differentiable on [0, 1]n because otherwise one may approximate g by a smooth
function in a standard way. Then, denoting

gi
(
x(i)
)
= inf

x′i∈X
g(x1, . . . , xi–1, x′i , xi+1, . . . , xn),

by separate convexity,

g(x) – gi
(
x(i)
)
≤
∣∣∣∣ ∂g∂xi

(x)
∣∣∣∣ .

Thus, for every x ∈ [0, 1]n,

n∑
i=1

(
g(x) – gi

(
x(i)
))2 ≤ 1.
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We return to the this problem in Section 7.5 where we will be able to drop the extra
assumptions on the range of g2.

For a concrete example, consider the �p norm ‖x‖p for some p ≥ 2. Then g(x) = ‖x‖p
is convex and Lipschitz, so we obtain that if X = (X1, . . . ,Xn) is a vector of independent
random variables taking values in an interval of length 1, then for all t > 0,

P
{
‖X‖2p ≤ E‖X‖2p – t

}
≤ e–t

2/(8E‖X‖2p)

and
P
{‖X‖p ≤ E‖X‖p – t

} ≤ e–t
2/8.

6.12 Proof of Lemma 6.22

The key to the success of the entropy method is that the differential inequalities for the
logarithmic moment-generating function of Z can be solved in many interesting cases. The
cases considered so far were all easily solvable by lucky coincidences. Here we try to extract
the essence of these circumstances and generalize them so that a large family of solvable
differential inequalities can be dealt with. The next lemma establishes some simple sufficient
conditions. Then Lemma 6.26 will allow us to use Lemma 6.25 to cope with more difficult
cases, and this will lead to the proof of Lemma 6.22.

Lemma 6.25 Let f be a nondecreasing continuously differentiable function on some interval I
containing 0 such that f (0) = 0, f ′(0) > 0 and f (x) �= 0 for every x �= 0. Let g be a con-
tinuous function on I and consider an infinitely many times differentiable function G on I
such that G(0) = G′(0) = 0 and for every λ ∈ I,

f (λ)G′(λ) – f ′(λ)G(λ) ≤ f 2(λ)g(λ).

Then, for every λ ∈ I, G(λ) ≤ f (λ)
∫ λ

0 g(x)dx.

Note the special case when f (λ) = λ, and g(λ) = L2/2 is the differential inequality
obtained, for example, in Theorems 5.3 and 6.7 and is used to obtain sub-Gaussian concen-
tration inequalities. If we choose f (λ) = eλ – 1 and g(λ) = –d(λ/eλ – 1)/dλ, we recover
the differential inequality seen in the proof of Theorem 6.12.

Proof Define ρ(λ) = G(λ)/f (λ) for every λ �= 0 and ρ(0) = 0. Using the assumptions on
G and f , we see that ρ is continuously differentiable on I with

ρ ′(λ) =
f (λ)G′(λ) – f ′(λ)G(λ)

f 2(λ)
for λ �= 0 and ρ′(0) =

G′′(0)
2f ′(0)

.

Hence f (λ)G′ (λ) – f ′ (λ)G (λ) ≤ f 2 (λ) g (λ) implies that

ρ′ (λ) ≤ g (λ)
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and therefore that the function�(λ) =
∫ λ

0 g(x)dx – ρ(λ) is nondecreasing on I. Since
�(0) = 0,� and f have the same sign on I, whichmeans that�(λ)f (λ) ≥ 0 for λ ∈ I
and the result follows. �

Except when a = 1, the differential inequality (6.4) cannot be solved exactly. A round-
about is provided by the following lemma that compares the solutions of a possibly difficult
differential inequality with solutions of a differential equation.

Lemma 6.26 Let I be an interval containing 0 and let ρ be continuous on I. Let a ≥ 0 and
v > 0. Let H : I → R, be an infinitely many times differentiable function satisfying

λH′(λ) – H(λ) ≤ ρ(λ) (aH′(λ) + v)

with

aH′(λ) + v > 0 for every λ ∈ I and H′(0) = H(0) = 0.

Let ρ0 : I → R be a function. Assume that G0 : I → R is infinitely many times differenti-
able such that for every λ ∈ I,

aG′
0(λ) + 1 > 0 and G′

0(0) = G0(0) = 0 and G′′
0(0) = 1.

Assume also that G0 solves the differential equation

λG′
0(λ) – G0(λ) = ρ0(λ) (aG′

0(λ) + 1) .

If ρ(λ) ≤ ρ0(λ) for every λ ∈ I, then H ≤ vG0.

Proof Let I, ρ, a, v,H,G0, ρ0 be defined as in the statement of the lemma. Combining the
assumptions onH, ρ0, ρ andG0,

λH′(λ) – H(λ) ≤ (λG′
0(λ) – G0(λ)) (aH′(λ) + v)

aG′
0(λ) + 1

for every λ ∈ I, or equivalently,

(λ + aG0(λ))H′(λ) – (1 + aG′
0(λ))H(λ) ≤ v (λG′

0(λ) – G0(λ)) .

Setting f (λ) = λ + aG0(λ) for every λ ∈ I and defining g : I → R by

g(λ) =
v (λG′

0(λ) – G0(λ))
(λ + aG0(λ))

2 if λ �= 0 and g(0) =
v
2
,

our assumptions on G0 imply that g is continuous on the whole interval I so that we
may apply Lemma 6.25. Hence, for every λ ∈ I

H(λ) ≤ f (λ)
∫ λ

0
g(x)dx = vf (λ)

∫ λ

0

(
G0(x)
f (x)

)′
dx

and the conclusion follows since limx→0 G0(x)/f (x) = 0. �
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Observe that the differential inequality in the statement of Lemma 6.22 has the same
form as the inequalities considered in Lemma 6.26 where φ replaces ρ. Note also that for
any γ ≥ 0,

2Gγ (λ) =
λ2

1 – γ λ

solves the differential inequality

λH′(λ) – H(λ) = λ2(γH′(λ) + 1). (6.5)

So by choosing γ = a and recalling that for λ ≥ 0, φ(–λ) ≤ λ2/2, it follows immediately
from Lemma 6.26, that

G(λ) ≤ λ2v
2(1 – aλ)

for λ ∈ (0, 1/a).

As G is the logarithmic moment-generating function of Z – EZ, this can be used to derive
a Bernstein-type inequality for the left tail of Z. However, the obtained constants are not
optimal, so proving that Lemma 6.22 requires some more care.

Proof of Lemma 6.22. The function 2Gγ may be the unique solution of equation (6.5)
but this is not the only equation for whichGγ is the solution. Define

ργ (λ) =
λG′

γ (λ) – Gγ (λ)
1 + aG′

γ (λ)
.

Then, on some interval I,Gγ is the solution of the differential equation

λH′(λ) – H(λ) = ργ (λ)(1 + aH′(λ)),

provided 1 + aG′
γ remains positive on I.

Thus, we have to look for the smallest γ ≥ 0 such that, on the relevant interval I
(with 0 ∈ I), we have both φ(–λ) ≤ ργ (λ) and 1 + aG′

γ (λ) > 0 for λ ∈ I.
Introduce

Dγ (λ) = (1 – γ λ)2(1 + aG′
γ (λ)) = (1 – γ λ)2 + aλ

(
1 –

γ λ

2

)
= 1 + 2(a/2 – γ )λ – γ (a/2 – γ )λ2.

Observe that ργ (λ) = λ2/(2Dγ (λ)).
For any interval I, 1 + aG′

γ (λ) > 0 for λ ∈ I holds if and only if Dγ (λ) > 0 for
λ ∈ I. Hence, if Dγ (λ) > 0 and φ(–λ) ≤ ργ (λ), then it follows from Lemma 6.26
that for every λ ∈ I, we haveG(λ) ≤ vGγ (λ).
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We first deal with intervals of the form I = [0, c–1+ ) (with c–1+ = ∞
when c+ = 0). If a ≤ 1/3, that is, c+ = 0, Dc+(λ) = 1 + aλ > 0 and ρc+(λ) ≥
λ2/(2(1 + λ/3)) ≥ φ(–λ) for λ ∈ I = [0, +∞).

If a > 1/3, then Dc+ (λ) = 1 + λ/3 – c+λ2/6 satisfies 0 < 1 + λ/6 ≤ Dc+(λ) ≤
1 + λ/3 on an interval I containing [0, c–1+ ), and therefore ρc+(λ) ≥ φ(–λ) on I.

Next we deal with intervals of the form I = (–θ , 0] where θ = a–1 if c– = 0,
and θ = c–1– (1 –

√
1 – 6c–) otherwise. Recall that for any λ ∈ (–3, 0], φ(–λ) ≤

λ2/(2(1 + λ/3)).
If a ≥ 1/3, that is, c– = 0,D–c– (λ) = 1 + aλ > 0 for λ ∈ (a–1, 0],

ρ–c– (λ) =
λ2

2(1 + aλ)
≥ λ2

2(1 + λ/3)
.

For a ∈ (0, 1/3), note first that 0 < c– ≤ 1/6, and that

0 < D–c– (λ) ≤ 1 +
λ

3
+

λ2

36
≤
(
1 +

λ

6

)2

for every λ ∈ (–θ , 0]. This also entails that ρ–c– (λ) ≥ φ(–λ) for λ ∈ (–θ , 0]. �

6.13 Some Variations

Next we present a few inequalities that are based on slight variations of the entropymethod.
These versions differ in the assumptions on how V+ or V– are controlled by different func-
tions ofZ. These inequalities demonstrate the flexibility of themethod, but our aim is not to
give an exhaustive list of concentration inequalities that can be obtained this way. Themes-
sage of this section is that by simple modifications of the main argument one may exploit
many special properties of the function f .

We start with inequalities that use negative association between increasing and decreas-
ing functions of Z.

Theorem 6.27 Assume that for some nondecreasing function g : R → R,

V– ≤ g(Z).

Then for all t > 0,

P {Z < EZ – t} ≤ e–t
2/(4Eg(Z)).

Proof In order to prove lower-tail inequalities, it suffices to derive suitable upper bounds
for the moment-generating function F(λ) = EeλZ for negative values of λ. By the third
inequality of Theorem 6.15,
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λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
]

≤
n∑
i=1

E
[
eλZτ(λ(Z′

i – Z)+)
]

≤
n∑
i=1

E
[
eλZλ2(Z′

i – Z)
2
+
]

(using λ < 0 and that τ(–x) ≤ x2 for x > 0)
= λ2E

[
eλZV–]

≤ λ2E
[
eλZg(Z)

]
.

Since g(Z) is a nondecreasing and eλZ is a decreasing function of Z, Chebyshev’s
association inequality (Theorem 2.14) implies that

E
[
eλZg(Z)

] ≤ E
[
eλZ
]
E[ g(Z)].

The inequality obtained has the same form as the differential inequality we saw in the
proof of Theorem 6.2 (withEg(Z) in place of v/2) and it can be solved in an analogous
way to obtain the announced lower-tail inequality. �

Often it is more natural to bound V+ by an increasing function of Z than to bound V–. In
such situations one can still say something about lower tail probabilities of Z but we need
the additional guarantee that |Z – Z′

i| remains bounded and that the inequality only applies
in a restricted range of the values of t.

Theorem 6.28 Assume that there exists a nondecreasing function g such that V+ ≤ g(Z)
and for any value of X = (X1, . . . ,Xn) and X′

i , |Z – Z′
i| ≤ 1. Then for all K > 0, if

λ ∈ [0, 1/K), then

logEe–λ(Z–EZ) ≤ λ2 τ(K)
K2 Eg(Z).

Moreover, for all 0 < t ≤ (e – 1)Eg(Z), we have

P {Z < EZ – t} ≤ exp
(
–

t2

4(e – 1)Eg(Z)

)
.

Proof The key observation is that the function τ(x)/x2 = (ex – 1)/x is increasing if
x > 0. Choose K > 0. Thus, for λ ∈ (–1/K, 0), the second inequality of Theorem
6.15 implies that
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λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZτ(–λ(Z – Z′

i)+)
]

≤ λ2 τ(K)
K2 E

[
eλZV+]

≤ λ2 τ(K)
K2 E

[
g(Z)eλZ

]
,

where at the last step we used the assumption of the theorem.
As in the proof of Theorem 6.27, we bound E

[
g(Z)eλZ

]
by E[g(Z)]E

[
eλZ
]
. The

rest of the proof is identical to that of Theorem 6.27. Here, we took K = 1. �

Our last general result deals with a frequently faced situation. In these cases V+ may be
bounded by the product of Z and another random variableW with well-behaved moment-
generating function. The following theorem provides a way to deal with such functionals
efficiently and painlessly.

Theorem 6.29 Assume that f is nonnegative and that there exists a random variable W,
such that

V+ ≤ WZ.

Then for all θ > 0 and λ ∈ (0, 1/θ),

logEeλ(
√
Z–E

√
Z) ≤ λθ

1 – λθ
logEeλW/θ .

Note that this theorem only bounds the moment-generating function of
√
Z. However,

one may easily obtain bounds for the upper-tail probability of Z by observing that, since√
EZ ≥ E

√
Z, and by writing x =

√
EZ + t –

√
EZ, we have, for λ > 0,

P{Z > EZ + t} ≤ P
{√

Z > E
√
Z + x

}
≤ Eeλ(

√
Z–E

√
Z)e–λx

byMarkov’s inequality.

Proof Introduce Y =
√
Z and Y (i) =

√
Z(i). Then

E′
[

n∑
i=1

(Y – Y (i))2+

]
= E′

[
n∑
i=1

(√
Z –

√
Z(i)

)2
+

]

≤ E′
[

n∑
i=1

(
(Z – Z(i))+√

Z

)2]

≤ 1
Z
E′
[

n∑
i=1

(
Z – Z(i)

)2
+

]
≤ W .

Thus, applying Theorem 6.16 for Y proves the statement. �
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Example 6.30 (TRIANGLES IN A RANDOM GRAPH) Consider the Erdős–Rényi G(n, p)
model of a random graph. Recall that such a graph has n vertices and for each pair
(u, v) of vertices an edge is inserted between u and vwith probability p, independently.
We write m =

(n
2

)
, and denote the indicator variables of the m edges by X1, . . . ,Xm

(i.e. Xi = 1 if edge i = (u, v) is present in the random graph and Xi = 0 otherwise).
Three edges form a triangle if there are vertices u, v,w such that the edges are of the
form (u, v), (v,w), and (w, u). Concentration properties of the number of triangles in
a random graph have received a great deal of attention and sharp bounds have been
derived by various sophisticated methods for different ranges of the parameter p of the
randomgraph (see the bibliographical remarks at the endof the chapter). Interestingly,
the left tail is substantially easier to handle, as Janson’s inequality, presented in the next
section, offers sharp estimates. However, proving sharp inequalities for the upper tail
was much more challenging. Here we only show some sub-optimal versions that are
easy to obtain from the general results of this chapter.

LetZ = f (X1, . . . ,Xm) denote the number of triangles in a random graph. Note that

EZ =
n(n – 1)(n – 2)

6
p3 ≈ n3p3

6
and

Var (Z) =
(
n
3

)
(p3 – p6) +

(
n
4

)(
4
2

)
(p5 – p6).

To obtain exponential upper-tail inequalities, we estimate the random variable

V+ =
n∑
i=1

E′(Z – Z′
i)
2
+.

If v and u denote the extremities of edge i (1 ≤ i ≤ m), then we denote by Bi the
number of vertices w such that both edges (u,w) and (v,w) exist in the random graph.
Then

V+ =
m∑
i=1

Xi(1 – p)B2
i .

Since
∑m

i=1 XiBi = 3Z, we have

V+ ≤ (1 – p)
m∑
i=1

Xi

(
max
j=1,...,m

Bj
)
Bi

= (1 – p)
(

max
j=1,...,m

Bj

) m∑
i=1

XiBi

= 3(1 – p)
(

max
j=1,...,m

Bj

)
Z.

By bounding maxj=1,...,m Bj trivially by n, we have V+ ≤ 3(1 – p)nZ. Define fi(X(i)) as
the number of triangles when we force the i-th edge to be absent in the graph. Then



SOME VAR I A T ION S | 203

clearly
∑n

i=1( f (X) – fi(X
(i)))2 = V+/(1 – p) and therefore, using the terminology of

Section 6.11, f is weakly (3n, 0)-self-bounding. Thus, by Theorem 6.19,

P {Z ≥ EZ + t} ≤ exp
(
–

t2

n4p3 + 3nt

)
.

It is clear that in the argument above a lot is lost by boundingW def= 3maxj=1,...,m Bj by
n. Indeed, onemay achieve a significant improvement by using Theorem 6.29. In order
to do so, we need to bound the moment-generating function ofW . This may be done
by another application of Theorem 6.19. LetW (i) denote the value ofW when edge i
is deleted from the random graph (if the graph contained that edge). ThenW (i) ≤ W
and

n∑
i=1

(
W –W (i)

)2 ≤ 18W ,

soW is weakly (18, 0)-self-bounding. Hence, by Theorem 6.19,

logEeλ(W–EW) ≤ 9λ2EW
1 – 9λ

.

Denoting Y =
√
Z, Theorem 6.29 leads to

logEeλ(Y–EY) ≤ λ

1 – λ

(
9λ2EW
1 – 9λ

+ λEW
)
≤ λ2EW

1 – 10λ
.

This is a sub-gamma bound for the moment-generating function of Y , and the compu-
tations of Sections 2.4 and 2.8 imply

P {Y > EY + t} ≤ exp
(
–

t2

4EW + 20t

)
.

Now it remains to bound the expected value ofW . Note thatW/3 is the maximum of
m =

(n
2

)
binomial random variables with parameters (n, p2). In order to obtain a quick

upper bound for EW/3, it is convenient to use the technique presented in Section
2.5 as follows: let Si with i ≤ m denote a sequence of binomially distributed random
variables with parameters n and p2. By Jensen’s inequality,

EW/3 ≤ log
(
E max

i=1,...,m
eSi
)

≤ log
(
E
[
meS1

])
= logm + log

(
EeS1

)
≤ logm + (e – 1)np2

≤ 2 log n + 2np2.
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Arguably, the most interesting values for p are those when p is at most of the order of
n–1/2 and in this case, the dominating term in the above expression is 2 log n. Hence,
we obtain the following bound for the tail of Y =

√
Z

P {Y ≥ EY + t} ≤ exp
(
–

t2

24(np2 + log n) + 20t

)
.

It is now easy to get tail bounds for the numberZ of triangles.We spare the reader from
the straightforward details (see the exercises).

6.14 Janson’s Inequality

Aswe saw in the examples of Section 6.13, inmany cases the special structure of the function
of independent random variables can be used to deduce concentration inequalities. In this
section we present another general result, a celebrated exponential lower-tail inequality for
Boolean polynomials.

More precisely, consider independent binary random variables X1, . . . ,Xn such that
P{Xi = 1} = 1 – P{Xi = 0} = pi for some p1, . . . , pn ∈ [0, 1]. To simplify notation, we
identify every binary vector α ∈ {0, 1}n with the subset of {1, . . . , n} defined by the non-
zero components of α. For example, for i ∈ {1, . . . , n}, we write i ∈ α to denote that the
i-th component of α equals 1. Then for each α ∈ {0, 1}n, we introduce the binary random
variable

Yα =
∏
i∈α

Xi.

Given a collection I of subsets of the binary hypercube {0, 1}n, we may define

Z =
∑
α∈I

Yα ,

which is a polynomial of the binary vector X = (X1, . . . ,Xn).
Boolean polynomials of this type are common in many applications of the probabilistic

method in discrete mathematics and also in the theory of random graphs, and their concen-
tration properties have been the subject of intensive study. Note that for any α,β ∈ I with
α ∩ β = ∅ (i.e. ifαiβi = 0 for all i = 1, . . . , n),EYαYβ = EYαEYβ and therefore the variance
of Z equals

Var (Z) = EZ2 – (EZ)2 =
∑

α,β∈I
EYαYβ –

∑
α,β∈I

EYαEYβ

=
∑

α,β∈I:α∩β �=∅
(EYαYβ – EYαEYβ)

≤
∑

α,β∈I:α∩β �=∅
EYαYβ

def= �.
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Thus, by Chebyshev’s inequality,

P{|Z – EZ| > t} ≤ �

t2
.

The next theorem shows the surprising fact that, at least for the lower tail, there is always an
exponential version of this inequality.

Theorem 6.31 (JANSON’S INEQUALITY) Let I denote a collection of subsets of {0, 1}n and
define Z and� as above. Then for all λ ≤ 0,

logEeλ(Z–EZ) ≤ φ

(
λ�

EZ

)
(EZ)2

�

where φ(x) = ex – x – 1. In particular, for all 0 ≤ t ≤ EZ,

P {Z ≤ EZ – t} ≤ e–t
2/(2�).

The proof of Janson’s inequality shown here shows certain similarities with the entropy
method. In particular, the proof is based on bounding the derivative of the logarithmic
moment-generating function of Z. However, sub-additivity inequalities can be avoided
because of a positive association property that can be exploited by an appropriate use of
Harris’ inequality (Theorem 2.15).

Proof Denote the logarithmic moment generating function of Z – EZ by
G(λ) = logEeλ(Z–EZ). Then the derivative ofG equals

G′(λ) =
E[ZeλZ]
EeλZ

– EZ =
∑
α∈I

E
[
YαeλZ

]
EeλZ

– EZ.

In the following, we derive an upper bound for each term E
[
YαeλZ

]
of the sum on the

right-hand side.
Fix an α ∈ I and introduce Uα =

∑
β:β∩α�=∅ Yβ and Zα =

∑
β:β∩α=∅ Yβ . Clearly,

regardless of what α is, Z = Uα + Zα . Since

E
[
YαeλZ

]
= E

[
eλZ | Yα = 1

]
EYα ,

it suffices to bound the conditional expectation. The key observation is that since
λ ≤ 0, both exp(λUα) and exp(λZα) are decreasing functions of X1, . . .Xn.
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E
[
eλZ | Yα = 1

]
= E

[
eλUα eλZα | Yα = 1

]
≥ E

[
eλUα | Yα = 1

]
E
[
eλZα | Yα = 1

]
(by Harris’ inequality)

= E
[
eλUα | Yα = 1

]
EeλZα (since Zα and Yα are independent)

≥ E
[
eλUα | Yα = 1

]
EeλZ (as Zα ≤ Z)

≥ eλE[Uα |Yα=1]EeλZ (by Jensen’s inequality).

Note that we apply Harris’ inequality above conditionally, given Yα = 1. This condi-
tion simply forces Xi = 1 for all i ∈ α, so both Uα and Zα are increasing functions of
the independent random variablesXi, i /∈ α andHarris’ inequality is used legally. Thus,
we obtain

E
[
ZeλZ

]
EZ

≥ EeλZ
∑
α∈I

EYα

EZ
eE[λUα |Yα=1]

≥ EeλZ exp

(∑
α∈I

EYα

EZ
E [λUα | Yα = 1]

)
(by Jensen’s inequality)

= EeλZ exp
(

λ
�

EZ

)
where we use the fact that

� =
∑
α∈I

E [YαUα] .

Summarizing, we have, for all λ ≤ 0,

G′(λ) ≥ EZ
(
eλ�/EZ – 1

)
.

Thus, integrating this inequality between λ and 0 and usingG(0) = 0, we find that for
λ ≤ 0,

G(λ) ≤ –EZ
∫ 0

λ

(
eu

�
EZ – 1

)
du = φ

(
λ�

EZ

)
(EZ)2

�

as desired. The second inequality follows from the simple fact that for x > 0,
φ(–x) ≤ x2/2. �

Remark 6.6 (PROBABILITY OF NON-EXISTENCE) In many applications of Janson’s
inequality, one wishes to show that in a random draw of the vector X = (X1, . . . ,Xn),
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with high probability, there exists at least one elementα ∈ I for whichYα = 1. In other
words, the goal is to show thatZ > 0 with high probability. To this end, onemay write

P{Z = 0} = P {Z ≤ EZ – EZ} ≤ exp
(
–
(EZ)2

2�

)
,

which is guaranteed to be exponentially small whenever
√

� is small compared to EZ.

Example 6.32 (TRIANGLES IN A RANDOM GRAPH) A prototypical application of
Janson’s inequality is the case of the number of triangles in an Erdős–Rényi random
graph G(n, p), discussed in Example 6.30 in the previous section. If Z denotes the
number of triangles inG(n, p), then recall that

EZ =
(
n
3

)
p3 and Var (Z) =

(
n
3

)
p3(1 – p3) + 2

(
n
4

)(
4
2

)
p5(1 – p).

The value of�may also be computed in a straightforward way. One obtains

� =
(
n
3

)
p3 + 2

(
n
4

)(
4
2

)
p5

which is only slightly larger than Var (Z). For the probability that the random graph
does not contain any triangle, we may use Janson’s inequality with t = EZ:

P {Z = 0} ≤ exp

(
–

(n
3

)2p6
2
((n

3

)
p3 + 2

(n
4

)(4
2

)
p5
)) ≤ exp

(
–

(n
3

)
p2

2 (1 + 2np2)

)
.

6.15 Bibliographical Remarks

The key principles of the entropy method rely on the ideas of proving Gaussian concen-
tration inequalities based on logarithmic Sobolev inequalities. These are summarized in
Chapter 5, where we also give some of the main references. It was Michel Ledoux (1997)
who realized that these ideas may be used as an alternative route to some of Talagrand’s
exponential concentration inequalities for empirical processes and Rademacher chaos.
Ledoux’s ideas were taken further by Massart (2000a), Bousquet (2002a), Klein (2002),
Rio (2001), andKlein and Rio (2005), while the core of thematerial of this chapter is based
on Boucheron, Lugosi, andMassart (2000, 2003, 2009).

Different versions of the modified logarithmic Sobolev inequalities used in this chapter
are due to Ledoux (1997, 1999, 2001) andMassart (2000a).

The bounded differences inequality is perhaps the simplest and most widely used expo-
nential concentration inequality. The basic idea of writing a function of independent
random variables as a sum of martingale differences, and using exponential inequalit-
ies for martingales, was first used in various applications by mathematicians including
Yurinskii (1976), Maurey (1979), Milman and Schechtman (1986), and Shamir and
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Spencer (1987). The inequality was first laid down explicitly and illustrated by a wide
variety of applications in an excellent survey paper by McDiarmid (1989), and the res-
ult itself has often been referred to as McDiarmid’s inequality. Martingale methods have
served as a flexible and versatile tool for proving concentration inequalities (see the more
recent surveys ofMcDiarmid (1998), Chung andLu (2006b), andDubhashi andPanconesi
(2009)).

The exponential tail inequality for sums of independent Hilbert-space valued random
variables derived in Example 6.3 is just a simple example. There is a vast literature dealing
with tails of sums of vector-valued random variables. It is outside the scope of this book
to derive the sharpest and most general results. Here we merely try to make the point that
general concentration inequalities prove to be a versatile tool in such applications. In fact,
applications of this type motivated some of the most significant advances in the theory of
concentration inequalities. In Chapters 11, 12, and 13 we discuss many of the principal
modern tools for analyzing the tails of sums of independent vector-valued random vari-
ables and empirical processes. For some of the classical references, the interested reader is
referred to Yurinskii (1976, 1995), Ledoux and Talagrand (1991), and Pinelis (1995).

The inequality described in Exercise 6.4 was proved independently by Guntuboyina and
Leeb (2009) and Bordenave, Caputo, and Chafaï (2011).

Theorem 6.5 is due toMcDiarmid (1998) who proved it using martingale methods. The
proof presented here is due to Andreas Maurer who kindly permitted us to reproduce his
elegant work.

The exponential inequality for the largest eigenvalue of a random symmetric matrix
described in Example 6.8 was proved by Alon, Krivelevich, and Vu (2002) who used
Talagrand’s convex distance inequality. Maurer (2006) obtained a better exponent with a
more careful analysis. Alon, Krivelevich, andVu (2002) show,with a simple extension of the
argument, that for the k-th largest (or k-th smallest) eigenvalue the upper bounds become
e–t2/(16k2), though it is not clear whether the factor k–2 in the exponent is necessary.

Theorem6.9 appears inMaurer (2006). Theorem6.10was first established byTalagrand
(1996c) who also proves a corresponding lower tail inequality which is presented in Section
7.5. The proof given here is due to Ledoux (1997).

Self-bounding functions were introduced by Boucheron, Lugosi, and Massart (2000)
who prove Theorem 6.12 building on techniques developed by Massart (2000a). Various
generalizations of the self-bounding property were considered by Boucheron, Lugosi, and
Massart (2003, 2009), Boucheron et al. (2005b), Devroye (2002), Maurer (2006), and
McDiarmid and Reed (2006). In particular, McDiarmid and Reed (2006) considered what
we call strongly (a, b)-self-bounding functions and proved results that are only slightly
weaker than those presented in Section 6.11. The weak self-bounding property was first
considered by Maurer (2006), and Theorem 6.19 is due to him. Theorems 6.21 and 6.20
appear in Boucheron, Lugosi, Massart (2009).

Wenote here that the inequality linking the expected and annealed VC entropies answers,
in a positiveway, a question raised byVapnik (1995, pp. 53–54): the empirical riskminimiz-
ation procedure is non-trivially consistent and rapidly convergent if and only if the annealed
entropy rate (1/n) log2 ET(X) converges to zero. For the definitions and discussion we
refer to Vapnik (1995).
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The material of Sections 6.8, 6.9, and 6.13 is based on Boucheron, Lugosi, and Massart
(2003).

Klaassen (1985) showed that Poisson distributions satisfy the “modified Poincaré”
inequality

Var ( f (Z)) ≤ EZ× E[|Df (Z)|2]

(see Exercise 3.21).
The search for modified logarithmic Sobolev inequalities, that is, functional inequalities

which capture the tail behavior of distributions that are less concentrated than the Gaussian
distribution, was initiated by Bobkov and Ledoux (1997). Their aim was to recover some
results of Talagrand concerning concentration properties of the exponential distribution.
Bobkov and Ledoux (1997, 1998) pointed out that the Poisson distribution cannot sat-
isfy an analog of the Gaussian logarithmic Sobolev inequality. They establish the second
inequality of Theorem 6.17. The first inequality of Theorem 6.17 is due to Wu (2000).
Othermodified logarithmic Sobolev inequalities have been investigated byAné andLedoux
(2000), Chafaï (2006), Bobkov and Tetali (2006), and others.

Janson’s inequality (Theorem 6.31)was first established by Janson (1990). This inequal-
ity has since become one of the basic standard tools of the probabilistic method of discrete
mathematics and random graph theory, and many variations, refinements, and alternative
proofs are now known.We refer the reader to themonographs of Alon and Spencer (1992),
and Janson, Łuczak, and Ruciński (2000) for surveys and further references.

The number of triangles, and more generally, the number of copies of a fixed subgraph,
in a random graphG(n, p) has been a subject of intensive study. For the lower-tail probabil-
ities, Janson’s inequality, shown in Section 6.14, gives an essentially tight bound. However,
obtaining sharp bounds for the upper tail has been an important non-trivial challenge.
For such upper-tail inequalities we refer the interested reader to the papers Kim and Vu
(2000, 2004), Vu (2000, 2001), Janson and Ruciński (2004, 2002), Janson, Oleszkiewicz,
and Ruciński (2004), Bolthausen, Comets, and Dembo (2009), Döring and Eichelsbacher
(2009), Chatterjee and Dey (2010), Chatterjee (2010), DeMarco and Kahn (2010), and
Schudy and Sviridenko (2012).

The inequalities derived in Example 6.30 are not the best possible.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

6.16 EX ERC I S E S

6.1. Relax the condition of Theorem 6.7 in the following way. Show that if
X = (X1, . . . ,Xn) and

E

[
n∑
i=1

(Z – Z′
i)
2
+

∣∣∣X] ≤ v
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then for all t > 0,

P {Z > EZ + t} ≤ e–t
2/(2v)

and if

E

[ n∑
i=1

(Z – Z′
i)
2
–

∣∣∣X] ≤ v,

then

P {Z < EZ – t} ≤ e–t
2/(2v).

6.2. (THE CAUCHY INTERLACING THEOREM) LetA be an n× nHermitianmatrix with
eigenvalues α1 ≤ α2 ≤ · · · ≤ αn. Denote by RA the Rayleigh quotient defined, for
every x ∈ Cn \ {0}, by

RA(x) =
x∗Ax
x∗x

.

Prove the min-max formulas

αk = max
{
min

{
RA(x) : x ∈ U and x �= 0

}
: dim(U) = n – k + 1

}
and

αk = min
{
max

{
RA(x) : x ∈ U and x �= 0

}
: dim(U) = k

}
.

Let P be an orthogonal projection matrix with rank m and define the Hermitian
matrix B = PAP. Denoting by β1 ≤ β2 ≤ · · · ≤ βm the eigenvalues of B, using the
minmax formulas, show that the eigenvalues of A and B interlace, that is, for all
j ≤ m, αj ≤ βj ≤ αn–m+j. (See Bai and Silverstein (2010).)

6.3. (RANK INEQUALITY FOR SPECTRAL MEASURES) Let A and B be n× nHermitian
matrices and denote by FA and FB the distribution functions related to the spectral
measures LA and LB of A and B, respectively. Setting k = rank(A – B), prove the rank
inequality

‖FA – FB‖∞ ≤ k
n
.

Hint: show that one can always assume that

A =
[
A11 A12
A21 A22

]
and B =

[
B11 A12
A21 A22

]
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where the order of A22 is n – k× n – k. Use the Cauchy interlacing theorem
(see Exercise 6.2 above) for the pairs of Hermitian matrices A and A22 on the one
hand and B and A22 on the other hand. (See Bai and Silverstein (2010).)

6.4. Show that the convexity assumption is essential in Theorem 6.10, by considering
the following example: let n be an even positive integer and define A = {x ∈ [0, 1]n :∑n

i=1 xi ≤ n/2}. Let f (x) = infy∈A ‖x – y‖. Then clearly f is Lipschitz but not convex.
Let the components ofX = (X1, . . . ,Xn) be i.i.d. withP{Xi = 0} = P{Xi = 1} = 1/2.
Show that there exists a constant c > 0 such that P{f (X) > Mf (X) + cn1/4} ≥ 1/4
for all sufficiently large n. (This example is taken from Ledoux and Talagrand (1991,
p. 17).)

6.5. Prove the following generalization of Theorem 6.10. LetX ⊂ Rd be a convex com-
pact set with diameter B. Let X1, . . . ,Xn be independent random variables taking
values in X and assume that f : X n → R is separately convex and Lipschitz, that
is, | f (x) – f (y)| ≤ ‖x – y‖ for all x, y ∈ X n ⊂ Rdn. ThenZ = f (X1, . . . ,Xn) satisfies,
for all t > 0,

P{Z > EZ + t} ≤ e–t
2/(2B2).

6.6. Let X1, . . . ,Xn be independent vector-valued random variables taking values in a
compact convex setX ⊂ Rd with diameter B. Let A denote the d× nmatrix whose
columns are X1, . . . ,Xn and let Z denote the largest singular value of A. Show that

P{Z > EZ + t} ≤ e–t
2/(2B2).

Compare the result with Example 6.11.
6.7. Assume that Z = f (X) = f (X1, . . . ,Xn) where X1, . . . ,Xn are independent real-

valued random variables and f is a nondecreasing function of each variable. Suppose
that there exists another nondecreasing function g : Rn → R such that

n∑
i=1

(Z – Z′
i)
2
– ≤ g(X).

Show that for all t > 0,

P{Z < EZ – t} ≤ e–t
2/(4Eg(X)).

Hint: use Harris’ inequality (Theorem 2.15).
6.8. (ALMOST BOUNDED DIFFERENCES)Assume thatZ = f (X) = f (X1, . . . ,Xn)where

X1, . . . ,Xn are independent real-valued random variables. Assume there exists a
monotone set A ⊂ Rn and constants v,C > 0 such that for x = (x1, . . . , xn) ∈
A,

∑n
i=1( f (x) – infx′i f (x1, . . . , x

′
i , . . . , xn))

2 ≤ v and for all x /∈ A,
∑n

i=1( f (x) –
infx′i f (x1, . . . , x

′
i , . . . , xn))

2 ≤ C. (A monotone set is such that if x ∈ A and y ≥ x
(component-wise) then y ∈ A.) Show that for all t > 0,
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P{Z > EZ + t} ≤ exp
(

–t2

2(v + CP{X /∈ A})

)
.

Hint: use Harris’ inequality (Theorem 2.15).
6.9. (RADEMACHER CHAOS OF ORDER TWO) Let T be a finite set of n× n symmetric

matrices with zero diagonal entries. Let ε = (ε1, . . . , εn) be a vector of independent
Rademacher variables. Let

Z = max
M∈T

n∑
i=1

n∑
j=1

Mi,jεiεj

and

Y = max
M∈T

⎛⎝ n∑
i=1

⎛⎝ n∑
j=1

εjMi,j

⎞⎠2⎞⎠1/2

.

Let B = maxM∈T ‖M‖2 where ‖M‖ denotes the (operator) norm of matrixM. Prove
that

Var (Z) ≤ 8E
[
Y2]

Var (Y2) ≤ 8BE
[
Y2]

logEeλ(Y
2–EY2) ≤ λ2

(1 – 8Bλ)
8BE[Y2]

logEeλ(Z–EZ) ≤ 16λ2

2(1 – 64Bλ)
E[Y2],

where λ ≥ 0. Hint: use Theorem 6.16 twice. Show that 8Y2 upper bounds an Efron–
Stein estimate of the variance of Z. Then use the fact that Y may be represented as
the supremum of a Rademacher process, and prove that Y 2 is (16B, 0)-weakly self-
bounding. Note that

E[Y2] = E

⎡⎣ sup
M∈T

n∑
i,j=1

εiεjM2
i,j

⎤⎦ .

See Talagrand (1996b), Ledoux (1997), and Boucheron, Lugosi, and Massart
(2003).

6.10. Prove Theorem 6.17. Hint: use Lemma 6.18 and the so-called ‘‘law of rare events,”
that is, the convergence of the binomial distribution to a Poisson.

6.11. (A LOGARITHMIC SOBOLEV INEQUALITY FOR THE EXPONENTIAL DISTRIBU-
TION). Assume X is exponentially distributed, that is, it has density exp(–x)for
x > 0. Prove that if f : [0,∞) → R is differentiable, then
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Ent
(
( f (X))2

) ≤ 4E
[
X( f ′(X))2

]
.

Hint: use the fact that if X1 and X2 are independent standard Gaussian random vari-
ables, (X2

1 + X2
2)/2 is exponentially distributed, and use the Gaussian logarithmic

Sobolev inequality.
6.12. (SQUARE ROOT OF A POISSON RANDOM VARIABLE) Let X be a Poisson random

variable. Prove that for 0 ≤ λ < 1/2,

logEeλ(
√
X–E

√
X) ≤ λ2

1 – 2λ
.

Show that

logEeλ(
√
X–E

√
X) ≤ vλ(eλ – 1)

where v = (EX)E[1/(4X + 1)]. UseMarkov’s inequality to show that

P
{√

X ≥ E
√
X + t

}
≤ exp

(
–
t
2
log

(
1 +

t
2v

))
.

Hint: the first inequality may be derived from Theorem 6.29. The second inequality
may be derived from Theorem 6.17.

6.13. (ENTROPIC VERSION OF THE LAW OF RARE EVENTS) Let X be a random variable
taking nonnegative integer values and define p(k) = P{X = k} for k = 0, 1, 2, . . . .
The scaled Fisher information of X is defined by

K(X) = (EX)E

[(
(X + 1)p(X + 1)

(EX)p(X)
– 1
)2
]
.

Let μ = EX. Use Theorem 6.17 to prove that the Kullback–Leibler divergence of X
and a Poisson(μ) random variable is at most K(X).

Let S be the sum of the independent integer-valued random variables X1, . . . ,Xn
with EXi = pi. Letμ =

∑n
i=1 pi. Prove that

K(S) ≤
n∑
i=1

pi
μ
K(Xi).

From this sub-additivity property, prove that the Kullback–Leibler divergence of
S and a Poisson(μ) random variable is at most (1/μ)

∑n
i=1 p

3
i /(1 – pi). (See

Kontoyiannis, Harremoës, and Johnson (2005).)
6.14. Consider the maximal degreeD of any vertex in a randomG(n, p) graph defined as in

Example 6.13. Show that for any sequence an → ∞, with probability tending to 1 as
n → ∞,
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∣∣∣∣D – np –
√
2p(1 – p)n log n

∣∣∣∣ ≤ an

√
p(1 – p)n
log n

(see Bollobás (2001, Corollary 3.14)). What do you obtain if you combine Lemma
2.4 with Theorem 6.12?

6.15. (LOWER BOUND FOR TRIANGLES) Let Z denote the number of triangles in a ran-
dom graphG(n, p) where p ≥ 1/n. Show that for every a > 0 there exists a constant
c = c(a) such that

P
{
Z > EZ + an3p3

} ≥ e–cp
2n2 log(1/p).

Hint: the lower bound is the probability that a fixed clique of size proportional to np
exists inG(n, p). (Vu (2001).)

6.16. Let Z be as in the previous exercise. Use the inequality for
√
Z shown in the text to

prove that for any K > 1, if t ≤ (K2 – 1)EZ, then

P {Z > EZ + t}

≤ exp

⎛⎜⎜⎝–
t2

(K + 1)2EZ
(
24np2 + 24 log n +

20t
(K + 1)

√
EZ

)
⎞⎟⎟⎠ .



7

Concentration and Isoperimetry

The concentration inequalities discussed in this book are intimately related to isoperimetric
problems. In this chapter we discuss some aspects of the rich relationship between isoperi-
metric problems and concentration inequalities. In Section 7.1 we start by establishing a
connection between isoperimetric inequalities in general metric spaces and concentration
of Lipschitz functions. We also give an equivalent formulation of the bounded differences
inequality (Theorem 6.2) which shows that every not-too-small set in a product probability
space has the property that the probability of those points whose Hamming distance from
the set is much larger than

√
n is exponentially small.

In Section 7.2 we show how the classical isoperimetric theorem follows from the
Brunn–Minkowski theorem and discuss isoperimetric inequalities on the surface of the
n-dimensional Euclidean ball and for the standard multivariate Gaussian measure.

In Section 7.3 we discuss the vertex isoperimetric theorem on the binary hypercube and
its relationship to concentration inequalities such as the bounded differences inequality.

Then, in Section 7.4, we present a powerful concentration inequality, known as Tala-
grand’s convex distance inequality, as a consequence of the concentration results for self-
bounding functions from Section 6.11. In Sections 7.5 and 7.6 we describe its applications
for convex Lipschitz functions and to a bin packing problem.

7.1 Lévy’s Inequalities

The classical isoperimetric theorem (proved in Section 7.2 below) states that among all
subsets of Rn of a given volume, Euclidean balls minimize their surface area. An equivalent
formulation is that, for any t > 0, among all (measurable) sets A ⊂ Rn of a given volume,
the ones for which the volume of the blowup of A, defined by

At = {x ∈ Rn : d(x, A) < t},

have minimal volume are Euclidean balls. Here d(x, A) = inf y∈A d(x, y) denotes the dis-
tance of x to the set A. The advantage of this formulation is that it avoids the notion of



216 | CONCENTRAT ION AND I SO P E R IM ETR Y

surface area and the problem can be generalized to arbitrarymetric spaces. In fact, countless
versions of the classical isoperimetric problem have been studied.

In particular, given a metric space X with corresponding distance d, consider the meas-
ure space formed by X , the σ -algebra of all Borel sets of X , and a probability measure P.
Let X be a random variable taking values inX , distributed according to P. The isoperimet-
ric problem in this case is the following: given p ∈ (0, 1) and t > 0, determine the sets A
with P{X ∈ A} ≥ p for which the measure P{d(X, A) ≥ t} is maximal. Even though the
exact solution is only known in a few special cases, useful bounds for P{d(X, A) ≥ t} can
be derived under remarkably general circumstances. Such bounds are usually referred to as
isoperimetric inequalities.

By introducing the so-called concentration function, defined, for all t > 0, by

α(t) = sup
A⊂X :P{A}≥1/2

P{d(X,A) ≥ t} = sup
A⊂X :P{A}≥1/2

P{Ac
t},

we see that isoperimetric inequalities may be formulated in terms of bounds forα(t). (Note
that, generalizing the notion of a blowup of a set, we write At = {x ∈ X : d(x,A) < t}
for any A ⊂ X .) The next two simple theorems show that α(t) is intimately related to
concentration of Lipschitz functions defined on X . The first result points out that isoperi-
metric inequalities (more precisely, upper bounds for the concentration function) imply
concentration of Lipschitz functions. Recall that a function f : X → R is Lipschitz if for
all x, y ∈ X, | f (x) – f ( y)| ≤ d(x, y). Recall also thatM f (X) denotes a median of the ran-
dom variable f (X), that is, any number for which both P{ f (X) ≤ M f (X)} ≥ 1/2 and
P{ f (X) ≥ M f (X)} ≥ 1/2 hold.

Theorem 7.1 (LÉVY’S INEQUALITIES) For any Lipschitz function f ,

P{ f (X) ≥ M f (X) + t} ≤ α(t) and P{ f (X) ≤ M f (X) – t} ≤ α(t).

Proof Consider the set A = {x : f (x) ≤ M f (X)}. By the definition of a median,
P{A} ≥ 1/2. On the other hand, by the Lipschitz property of f ,

At = {x : d(x,A) < t} ⊆ {x : f (x) < M f (X) + t}.

The first inequality now follows from the definition of the concentration function. The
second inequality follows from the first by considering –f . �

By an obviousmodification of the proof one sees that if f is Lipschitz with constantC (i.e.
| f (x) – f (y)| ≤ Cd(x, y) for all x, y ∈ X ), then

P{ f (X) ≥ M f (X) + t} ≤ α(t/C) and P{ f (X) ≤ M f (X) – t} ≤ α(t/C).

The next converse shows that concentration of Lipschitz functions implies an isoperimetric
inequality.
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Theorem 7.2 (CONVERSE) If β : R+ → [0, 1] is a function such that for every Lipschitz
function f : X → R

P{ f (X) ≥ M f (X) + t} ≤ β(t),

then β(t) ≥ α(t).

Proof Simply observe that for any A ⊂ X , the function f A defined by fA(x)=d(x,A) is
Lipschitz. Also, if P{A} ≥ 1/2, then 0 is a median of f A(X) and therefore

α(t) = sup
A⊂X :P{A}≥1/2

P
{
f A(X) ≥ M f (X) + t

} ≤ β(t).
�

It is instructive to cast the bounded differences inequality (Theorem 6.2) in the frame-
work described above.

Example 7.3 (BOUNDED DIFFERENCES INEQUALITY REVISITED) Consider independ-
ent randomvariablesX1, . . . ,Xn taking their values in a (measurable) setX and denote
the vector of these variables byX = (X1, . . . ,Xn) taking its value inX n. For an arbitrary
(measurable) setA ⊂ X n wewriteP{A} = P{X ∈ A}. TheHamming distance dH(x, y)
between the vectors x, y ∈ X n is defined as the number of coordinates in which x
and y differ. With this distance the product space X n becomes a metric space and
Theorem 6.2 implies that if f : X n → R is Lipschitz with respect to the Hamming
distance, then

P{ f (X) ≥ E f (X) + t} ≤ e–2t
2/n.

The argument of Theorem 7.2 leads to the following.

Corollary 7.4 For any t > 0,

P

{
dH(X,A) ≥ t +

√
n
2
log

1
P{A}

}
≤ e–2t

2/n.

Proof Since the function f (x) = dH(x,A) is Lipschitz with respect to the Hamming dis-
tance, by the bounded differences inequality (Theorem 6.2),

P
{
EdH(X,A) – dH(X,A) ≥ t

} ≤ e–2t
2/n.

However, by taking t = EdH(X,A), the left-hand side becomes P{dH(X,A) ≤ 0} =
P{A}, so the above inequality implies

EdH(X,A) ≤
√
n
2
log

1
P{A}

.

Then, by using the bounded differences inequality again, we obtain

P

{
dH(X,A) ≥ t +

√
n
2
log

1
P{A}

}
≤ e–2t

2/n

as desired. �
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To interpret this corollary, observe that on the right-hand side we have the measure of
the complement of the t +

√
(n/2) log(1/P{A})-blowup of the set A, that is, the measure

of the set of points whose Hamming distance from A is at least t +
√
(n/2) log(1/P{A}).

To appreciate the meaning of this fact, consider a set, say, with P{A} = 1/106. Then the
measure of the set of points whose Hamming distance to A is more than 10

√
n is smaller

than e–108. In other words, product measures are concentrated on extremely small sets –
hence the name “concentration of measure.”

As in Theorem 7.1, the bounded differences inequality may also be derived from
Corollary 7.4.

7.2 The Classical Isoperimetric Theorem

In this section we show how the classical isoperimetric theorem follows from a simple
application of the Brunn–Minkowski inequality. The same inequality also yields interest-
ing isoperimetric inequalities for the important case of the uniform distribution over the
surface of the Euclidean unit ball inRn and the canonical Gaussian distribution inRn.

The classical isoperimetric theorem in Rn states that, among all sets with a given
volume, the Euclidean unit ball minimizes the surface area. More precisely, let A ⊂ Rn

be a measurable set and denote by Vol(A) its Lebesgue measure. The surface area of A is
defined by

Vol(∂A) = lim
t→0

Vol(At) – Vol(A)
t

,

provided that the limit exists. Here At denotes the t-blowup of A. Observe that if
B = {x ∈ Rn : ‖x‖ < 1} denotes the unit open ball, then, recalling the notion of
Minkowski sum from Section 4.14,

At = A + tB.

Theorem 7.5 (ISOPERIMETRIC THEOREM) Let A ⊂ Rn be such that Vol(A) = Vol(B).
Then for any t > 0, Vol(At) ≥ Vol(Bt). Moreover, if Vol(∂A) exists, then
Vol(∂A) ≥ Vol(∂B).

Proof By the Brunn–Minkowski inequality (Theorem 4.23),

Vol(At)1/n = Vol(A + tB)1/n

≥ Vol(A)1/n + tVol(B)1/n

= Vol(B)1/n(1 + t) = Vol(Bt)1/n,

establishing the first statement. The second follows simply because

Vol(At) – Vol(A) ≥ Vol(B) ((1 + t)n – 1) ≥ ntVol(B)

where we used, for a, b ≥ 0, (a + b)n ≥ an + nan–1b. Thus, Vol(∂A) ≥ nVol(B).
The isoperimetric theorem now follows from the fact (see Exercise 7.7) that
Vol(∂B) = nVol(B). �
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There are few more examples of metric spaces and corresponding measures for which
the exact solution of the isoperimetric problem is known.Two important and closely related
cases are the surface of the unit Euclidean ball inRn equippedwith the uniformmeasure and
Rn with the canonical Gaussian measure. Both of these isoperimetric theorems are signific-
antlymore intricate thanTheorem 7.5 above but approximate isoperimetric inequalities are
easy to derive, as is pointed out below.

Gaussian isoperimetric inequalities In the Gaussian isoperimetric problem one con-
siders Rn equipped with the Euclidean metric and the canonical Gaussian measure P
defined, for any measurable set A ⊂ Rn, by P(A) =

∫
A φ(x)dxwhere

φ(x) = (2π)–n/2e–‖x‖
2/2.

The Gaussian isoperimetric theorem, proved in Chapter 10, states that among all measur-
able sets, half-spaces minimize the Gaussian surface area. More precisely, for any measur-
able set A ⊂ Rn, the t-blowup of A satisfies

P(At) ≥ �
(
�–1(P(A) + t)

)
where� denotes the standard Gaussian distribution function

�(x) =
∫ x

–∞
e–y2/2√
2π

dy.

Equality holds if and only if A is a half-space (see Theorem 10.15). Equivalently, the
concentration function, introduced in Section 7.1, equals

α(t) = 1 – �(t).

In other words, for any set A ⊂ Rn with P(A) ≥ 1/2, P(Ac
t) ≤ 1 – �(t). By

well-known approximations of the standard Gaussian distribution function,
1 – �(t) ≈ 1/(t

√
2π)e–t2/2 (see Exercise 7.8). Observe that the Gaussian concen-

tration inequality (Theorem 5.6) implies an isoperimetric inequality that already captures
the essence of this. Indeed, ifX is a standardGaussian vector then for any Lipschitz function
f : Rn → R and t > 0,

P
{
f (X) ≥ M f (X) + t

}
= P

{
f (X) ≥ E f (X) + (M f (X) – E f (X) + t)

}
≤ e–(M f (X)–E f (X)+t)2/2

by Theorem 5.6. Now the Gaussian Poincaré inequality (Theorem 3.20) and Exercise 2.1
imply that

M f (X) – Ef (X) ≤
√
Var (f (X)) ≤ 1

and therefore, by Theorem 7.2, α(t) ≤ e–(t–1)2/2, which is only slightly weaker than that
derived from the Gaussian isoperimetric theorem.
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Isoperimetric inequalities on the unit sphere A problem closely related to the
Gaussian isoperimetric inequalities discussed above is the isoperimetric problem on the
unit sphere. More precisely, let Sn–1 = {x ∈ Rn : ‖x‖ = 1} denote the surface of the unit
ball in Rn. The isoperimetric problem in Sn–1 (equipped with the Euclidean distance in
Rn) is of fundamental importance in many applications. To understand the relationship
with the Gaussian isoperimetric problem, note that ifX is a standard Gaussian vector inRn,
then X/‖X‖ is uniformly distributed over Sn–1. Moreover, for large n, ‖X‖ is concentrated
around its expected value and therefore the canonical Gaussian measure in Rn resembles
the uniform measure over Sn–1. Indeed, Lévy’s isoperimetric theorem on Sn–1 states that,
as in the case of the Gaussian measure, the extremal sets in the isoperimetric problem
on Sn–1 are half-spaces of Rn as well. The intersection of a half-space and Sn–1, called a
spherical cap, are just the balls in the metric space Sn–1. For u ∈ Sn–1 and s ∈ [0, 1], let
C(u, s) = {x ∈ Sn–1 : x · u ≥ s} denote a spherical cap of height 1 – s around u. According
to Lévy’s isoperimetric theorem, for any t > 0, for any measurable set A ⊂ Sn–1, if
C = C(u, s) is a spherical cap with μ(A) = μ(C) (where μ denotes the uniform probab-
ility measure over Sn–1), then for any t > 0, μ(At) ≥ μ(Ct) where At and Ct denote the
t-blowups of A and C. Note that Ct is a spherical cap as well. For simplicity of the discus-
sion, consider the special case when μ(A) = 1/2. In that case we may take C = C(u, 0) to
be any hemisphere for any u ∈ Sn–1 and the complement of Ct is a spherical cap of height
s = 1/

√
1 + t–2 (see Fig. 7.1).

By the isoperimetric theorem,

1 – μ(At) ≤ μ
(
C
(
u, 1/

√
1 + t–2

))
.

To better understand the implications of this bound, one may approximate the area of a
spherical cap C(u, s). An easy bound is obtained by observing that if s ≤ 1/

√
2, the whole

spherical cone defined as the convex hull of C(u, s) and the origin is included in a ball of
radius

√
1 – s2 (see Fig. 7.2) and therefore the area of the cap is at most the proportion of

s

t

√

s/t =
√

1 − s2

Figure 7.1 The height of the spherical cap defined as the complement of t-blowup of a hemisphere is

1 – s = 1 – 1/
√
1 + t–2
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s

√
1 − s2

Figure 7.2 Bounding the area of a spherical cap

the unit ball {x : ‖x‖ ≤ 1} that falls in the spherical cone, which is at most (1 – s2)n/2, and
therefore, for any set withμ(A) ≤ 1/2,

1 – μ(At) ≤ (1 + t2)–n/2 ≤ e–nt
2/2.

By a more careful bounding of the integral that defines the area of the spherical cap, sharper
bounds can be obtained. For example, for

√
2/n ≤ s ≤ 1, one has

1
6s
√
n
(1 – s2)

n–1
2 ≤ μ(C(u, s)) ≤ 1

2s
√
n
(1 – s2)

n–1
2

(see Exercise 7.9) which gives slightly better bounds forμ(At).
As in the case of the Gaussian measure, it is not necessary to prove the full isoperimetric

theorem to obtain inequalities of the type described above. A possible way to proceed is
to use the fact that if X is a standard Gaussian vector in Rn, then X/‖X‖ has the uniform
distribution over Sn–1 and use the Gaussian concentration inequality. Here we show how
the Brunn–Minkowski inequality may be used.

To this end, consider an arbitrary subsetC ⊂ B = {x ∈ Rn : ‖x‖ ≤ 1} of the unit ball in
Rn. By the parallelogram rule, if x ∈ C and y ∈ Cc

t ∩ B, then

‖x + y‖2 = 2‖x‖2 + 2‖y2‖ – ‖x – y‖2 ≤ 4 – t2

and therefore ‖(x + y)/2‖ ≤ √
1 – t2/4 ≤ 1 – t2/8. This implies that

1
2
(C + Cc

t) ⊂
(
1 –

t2

8

)
B

and therefore, by the “weaker form” of the Brunn–Minkowski inequality (Corollary 4.25),
we have

Vol(C)Vol(Cc
t) ≤ μ

(
1
2
(C + Cc

t)
)
≤
(
1 –

t2

8

)2n

Vol(B)2.
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Now let A ⊂ Sn–1 be a measurable subset of the surface of B and let t > 0. Defining
C = ∪a∈[1/2,1]a · A, we find that∪a∈[1/2,1]a · Ac

t ⊂ Cc
t/2.Moreover,μ(A) ≤ (1/2) Vol(C)/

Vol(B) andμ(Ac
t) ≤ Vol(∪a∈[1/2,1]a · Ac

t)/Vol(B), and therefore

μ(A)μ(Ac
t) ≤ 2

(
1 –

t2

32

)2n

.

For example, for all sets A ⊂ Sn–1 withμ(A) ≤ 1/2, we obtain

1 – μ(At) ≤ 4e–nt
2/16.

Even though the constants are worse than those obtained directly from the isoperimet-
ric theorem, the inequality has a qualitatively similar form. Also, the proof is considerably
simpler and can be generalized to other normed spaces (see Exercise 7.10).

7.3 Vertex Isoperimetric Inequality in the Hypercube

A thoroughly studied special case of isoperimetric problems is when the underlying met-
ric space corresponds to the vertex set of a finite graph. Depending on how the size of
the boundary of a subset of vertices is defined, we distinguish two variants, the vertex iso-
perimetric problem and the edge isoperimetric problem. In this section we discuss a basic but
important special case of such discrete isoperimetric problems, when the graph is the binary
hypercube.

Consider a graphG and letA be a set of its vertices. The vertex boundary ofA is defined as
the set of those vertices, not in A, which are connected to some vertex in A by an edge. We
denote the vertex boundary of A by ∂V(A). The vertex isoperimetric problem in a graph G
is to determine the sets A of a given cardinality whose vertex boundary contains a minimal
number of vertices. In the edge isoperimetric problem one minimizes the number of edges
between A and its complement.

The most classical and best understood special case is when the graph G is the binary
hypercube {–1, 1}n in which two vertices are connected by an edge if and only if their
Hamming distance equals 1. We have already discussed briefly, in Chapter 4, the edge iso-
perimetric problem and we showed that when |A| = 2k for some integer 0 ≤ k ≤ n, then
k-dimensional sub-cubes minimize the size of the edge-boundary (see Theorem 4.3).

In order to describe the subsets of {–1, 1}n with minimal vertex boundary, we define
the so-called simplicial order of the elements of the binary hypercube. We say that
x = (x1, . . . , xn) ∈ {–1, 1}n precedes y = (y1, . . . , yn) ∈ {–1, 1}n in the simplicial order if
either ‖x‖ < ‖y‖ (where ‖x‖ =

∑n
i=1 1{xi=1}) or ‖x‖ = ‖y‖ and xi = 1 and yi = –1 for

the smallest i for which xi �= yi. For example, if n = 4, (1, –1, –1, 1) precedes (–1, 1, 1, 1)
and (1, –1, 1, –1) precedes (1, –1, –1, 1). Harper’s classical vertex isoperimetric theorem
states that initial segments of the simplicial ordering minimize the vertex boundary. More
precisely, for N = 1, . . . , 2n, let SN denote the set of first N elements of {–1, 1}n in the
simplicial order. Then the following is true.
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Theorem 7.6 (HARPER’S VERTEX ISOPERIMETRIC THEOREM) For any subset
A ⊂ {–1, 1}n,

∂V(A) ≥ ∂V
(
S|A|

)
.

We leave the proof of this theorem to the reader (see Exercises 7.11–7.13 for detailed
guidance).

Observe that if N has the form N =
∑k

i=0
(n
i

)
for some k = 0, . . . , n then the initial seg-

ment SN contains exactly those vectors x whose Hamming distance to (–1, . . . , –1) is at
most k. In other words, SN is aHamming ball centered at the vector (–1, . . . , –1). The fact
that among all sets with a given volume balls minimize the surface area is in close analogy
with the classical isoperimetric theorem. Observe that if SN is a Hamming ball with radius
k
(
i.e.N =

∑k
i = 0

(n
i

))
then SN ∪ ∂V(SN) is the Hamming ball of radius k + 1. This implies

that for any set A ⊂ {–1, 1}n with |A| ≥∑k
i = 0

(n
i

)
, we have |A ∪ ∂V(A)| ≥∑k + 1

i = 0
(n
i

)
. By

iterating this argument, we obtain the following simple consequence of Harper’s theorem.
For any A ⊂ {–1, 1}n and x ∈ {–1, 1}n, let dH(x,A) = miny∈A dH(x, y) be the Hamming
distance of x to the set A. Also, denote by

At =
{
x ∈ {–1, 1}n : dH(x,A) < t

}
the t – blowup of the set A, that is, the set of points whose Hamming distance from A is at
most t.

Corollary 7.7 Let A ⊂ {–1, 1}n such that |A| ≥∑k
i = 0

(n
i

)
. Then for any t = 1, 2, . . . ,

n – k + 1,

|At| ≥
k + t–1∑
i = 0

(
n
i

)
.

In particular, if |A|/2n ≥ 1/2 then we may take k = #n/2$ in the corollary above and

|At|
2n

≥ P{B(n, 1/2) < EB(n, 1/2) + t} ≥ 1 – e–2t
2/n

where B(n, 1/2) is a binomial random variable with parameters n and 1/2. The last inequal-
ity follows from standard tail estimates of a symmetric binomial distribution, for example,
fromHoeffding’s inequality.

This simple fact reveals the concentration-of-measure phenomenon we have already
encountered: consider any set A containing at least half of the points of {–1, 1}n. According
to the corollary above, the fraction of those points which cannot be obtained by changing
at most c

√
n bits of some point in A is at most e–2c2 . In other words, an immense majority of

the points in {–1, 1}n is within Hamming distance of the order of
√
n of A.

We may also apply Lévy’s inequality (Theorem 7.1) in this situation and observe that
this simple consequence of Harper’s vertex isoperimetric theorem implies a version of
the bounded differences inequality for functions defined on {–1, 1}n under the uniform
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measure. More precisely, let f be a function defined on {–1, 1}n satisfying the bounded
differences property such that

max
x∈{–1,1}n ,i

| f (x) – f (x̃(i))| ≤ 1

where x̃(i) = (x1, . . . , xi–1, –xi, xi+1, . . . , xn) is obtained by flipping the i-th bit of x. If X =
(X1, . . . ,Xn) is uniformly distributed over {–1, 1}n, we may consider the random variable
Z = f (X). Then f is Lipschitz with respect to the Hamming distance and Theorem 7.1
implies that P{Z > MZ + t} ≤ e–2t2/n. This is just like in the bounded differences inequal-
ity, except that the expected value of Z is replaced by its median. However, by Exercise 2.1
and the Efron–Stein inequality,

M f (X) – Ef (X) ≤
√
Var (f (X)) ≤ √

n/4.

Exact isoperimetric results like Harper’s theorem are extremely valuable as they allow
one to deduce the sharpest possible concentration inequalities for Lipschitz functions.
Unfortunately, there are only special examples of exact isoperimetric results. Here we men-
tion just one of them, without proof, and refer to the bibliographical remarks for further
pointers in the literature.

Consider again the binary hypercube {–1, 1}n but now equipped with the
product measure of n i.i.d. Bernoulli random variables, that is, for any x ∈ {–1, 1}n,
P{x} = p‖x‖(1 – p)n–‖x‖ where p ∈ (0, 1) is the parameter of the Bernoulli distribution.
The isoperimetric problem now is to determine the setsA, with a given probability content,
that minimize the probability P{∂V(A)} of the vertex boundary. This problem can be
solved for the special case of monotone sets. Recall that a set A ⊂ {–1, 1}n is monotone if
1{x∈A} ≥ 1{y∈A} for all x = (x1, . . . , xn) and y = (y1, . . . , yn) in {–1, 1}n such that xi ≥ yi
for all i. Surprisingly, Hamming balls are still isoperimetric sets in the sense of the following
theorem whose proof we omit.

Theorem 7.8 Let k ∈ {0, . . . , n} and let S = {x ∈ {–1, 1}n : ‖x‖ ≤ k} be a Hamming
ball of radius k. If A ⊂ {–1, 1}n is a monotone set such that P{A} ≥ P{S} then
P{∂V(A)} ≥ P{∂V(S)}.

7.4 Convex Distance Inequality

In a remarkable series of papers Talagrand developed an inductionmethod to prove power-
ful concentration results in many cases when the bounded differences inequality fails.
Perhaps the most widely used of these is the so-called “convex-distance inequality” which
we present here as a consequence of the entropy method, namely Theorems 6.19 and 6.20.

To understand Talagrand’s inequality, first observe that Corollary 7.4 may be easily gen-
eralized by allowing the distance of the pointX from the set A to be measured by a weighted
Hamming distance

dα(x,A) = inf
y∈A dα(x, y) = inf

y∈A
∑
i:xi �=yi

αi
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where α = (α1, . . . ,αn) is a vector of nonnegative numbers. Repeating the argument of the
proof of Corollary 7.4, we obtain, for all α,

P

{
dα(X,A) ≥ t +

√
‖α‖2
2

log
1

P{A}

}
≤ e–2t

2/‖α‖2 ,

whereP{A} = P{X ∈ A} and ‖α‖ =
√∑n

i=1 α2
i denotes the euclidean normofα. Thus, for

example, for all vectors α with unit norm ‖α‖ = 1,

P

{
dα(X,A) ≥ t +

√
1
2
log

1
P{A}

}
≤ e–2t

2
.

Thus, denoting u =
√

1
2 log

1
P{A} , for any t ≥ u,

P
{
dα(X,A) ≥ t

} ≤ e–2(t–u)
2
.

On the one hand, if t ≤ √
–2 logP{A}, then P{A} ≤ e–t2/2. On the other hand,

since (t – u)2 ≥ t2/4 for t ≥ 2u, for any t ≥
√
2 log 1

P{A} the inequality above implies

P
{
dα(X,A) ≥ t

} ≤ e–t2/2. Thus, for all t > 0, we have

sup
α:‖α‖=1

P{A} · P {dα(X,A) ≥ t
} ≤ sup

α:‖α‖=1
min

(
P{A},P

{
dα(X,A) ≥ t

})
≤ e–t

2/2.

The main message of Talagrand’s inequality is that the above inequality remains true even
if the supremum is taken within the probability. To make this statement precise, introduce,
for any x = (x1, . . . , xn) ∈ X n, the convex distance of x from the set A by

dT(x,A) = sup
α∈[0,∞)n:‖α‖=1

dα(x,A).

Theorem 7.9 (CONVEX DISTANCE INEQUALITY) For any subset A ⊆ X n and t > 0,

P{A}P
{
dT(X,A) ≥ t

} ≤ e–t
2/4.

The theorem is announced in the form by which Talagrand proved it, but the proof
shown here gives a worse exponent in the upper bound (et2/10 instead of et2/4). We give
a different proof of the form announced here in Section 8.4. The convex distance inequal-
ity is implied by Theorems 6.19 and 6.20 for weakly self-bounding functions. The key to
the proof is establishing the following self-bounding property for the square of the convex
distance. Recall from Section 6.11 the notion of weak self-bounding functions.



226 | CONCENTRAT ION AND I SO P E R IM ETR Y

Lemma 7.10 Let A ∈ X n be a measurable set and define the function f (x) = dT(x,A)2.
Introduce also

fi(x(i)) = inf
x′i∈X

f (x1, . . . , xi–1, x′i , xi+1, . . . , xn).

Then for all x ∈ X n, 0 ≤ f (x) – fi(x(i)) ≤ 1. Moreover, f is weakly (4, 0)-self-bounding,
that is,

n∑
i=1

(
f (x) – fi(x(i))

)2 ≤ 4f (x).

Before proving the lemma, we show how it implies the convex distance inequality.

Proof of Theorem 7.9. By the definition of the convex distance, we have
A =

{
x : dT(x,A) = 0

}
. Observe now that thanks to Lemma 7.10, we may use

Theorem 6.20 with f (x) = d2T(x,A) and t = Ed2T(X,A) to obtain

P{A} = P
{
d2T(X,A) ≤ Ed2T(X,A) – t

} ≤ exp
(
–
Ed2T(X,A)

8

)
or, equivalently,

P{A} exp
(
Ed2T(X,A)

8

)
≤ 1.

On the other hand, Theorem 6.19 implies that for 0 ≤ λ ≤ 1/2,

logE
[
eλ(d

2
T(X,A)–Ed

2
T(X,A))

]
≤ 2λ2Ed2T(X,A)

1 – 2λ
.

Choosing λ = 1/10, we have

E exp
(
d2T(X,A)

10

)
≤ exp

(
Ed2T(X,A)

8

)
which gives

P{X ∈ A}Eed
2
T(X,A)/10 ≤ 1.

ByMarkov’s inequality,

P
{
dT(X,A) ≥ t

} ≤ Eed
2
T(X,A)/10e–t

2/10

which completes the proof. �

It remains to prove the self-bounding property of the squared convex distance.
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Proof of Lemma 7.10. Theproof is based ondifferent formulations of the convex distance.
First we observe that dT(x,A) can be represented as a saddle point. LetM(A) denote
the set of probability measures on A. Then

dT(x,A) = sup
α:‖α‖≤1

inf
ν∈M(A)

∑
j

αjEν1{xj �=Yj}

(where Y = (Y1, . . . , Yn) is distributed according to ν)

= inf
ν∈M(A)

sup
α:‖α‖≤1

∑
j

αjEν1{xj �=Yj} (7.1)

where the saddle point is achieved. This follows from Sion’s minmax theorem (1958)
which states that if f (x, y) : X × Y → R is convex and lower-semi-continuous with
respect to x, concave and upper-semi-continuous with respect to y, whereX is convex
and compact, then

inf
x
sup
y
f (x, y) = sup

y
inf
x
f (x, y).

We leave the details of checking the conditions of Sion’s theorem to the reader (see
Exercise 7.14).

By the Cauchy–Schwarz inequality,

dT(x,A)2 = inf
ν∈M(A)

n∑
j=1

(
Eν1{xj �=Yj}

)2 .
Rather than minimizing in the large space M(A), we may perform minimization
on the convex compact set of probability measures on {0, 1}n by mapping y ∈ A on
(1{yj �=Xj})1≤j≤n. Denote this mapping by χ . Note that the mapping depends on x but
we omit this dependence to lighten notation. The setM(A)◦χ–1 of probability meas-
ures on {0, 1}n coincides withM(χ(A)). It is convex and compact and therefore the
infimum in the last display is achieved at some ν̂. Then dT(X,A) is just the Euclidean
norm of the vector

(
Eν̂1{xj �=Yj}

)
j≤n, and therefore the supremum in (7.1) is achieved by

the vector α̂ of components

α̂i =
Eν̂1{xi �=Yi}√∑n
j=1
(
Eν̂1{xj �=Yj}

)2 .
For simplicity, assume that the infimum in the definition of fi(x(i)) is achieved
(otherwise a standard approximation argument may be used).

Clearly, f (x) – fi(x(i)) ≥ 0 for all i. On the other hand let x(i)i and ν̂i denote the
coordinate value and the probability distribution onA that witness the value of fi(x(i)),
that is,

fi(x(i)) =
∑
j�=i

(
Eν̂i1{xj �=Yj}

)2 + (Eν̂i1{x(i)i �=Yi}
)2

.
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As f (x) ≤∑
j�=i
(
Eν̂i1{xj �=Yj}

)2 + (Eν̂i1{x(i)i �=Yi}
)2, we have

f (x) – fi
(
x(i)
) ≤ (

Eν̂i1{xi �=Yi}
)2 – (Eν̂i1{x(i)i �=Yi}

)2 ≤ 1.

It remains to prove that f is weakly (4, 0)-self-bounding. To this end, we may use
once again Sion’s minmax theorem as in (7.1), to write the convex distance

dT(x,A) = inf
ν∈M(A)

sup
α:‖α‖2≤1

n∑
j=1

αjEν1{xj �=Yj}

= sup
α:‖α‖2≤1

inf
ν∈M(A)

n∑
j=1

αjEν1{xj �=Yj}.

Denote the pair (ν,α) at which the saddle point is achieved by (ν̂, α̂). Then√
fi(x(i)) = inf

ν∈M(A)
sup

α:‖α‖2≤1

n∑
j=1

αjEν1{x(i)j �=Yj} ≥ inf
ν∈M(A)

n∑
j=1

α̂jEν1{x(i)j �=Yj}.

Let ν̃ denote the distribution on A that achieves the infimum in the latter expression.
Then we have √

f (x) = inf
ν

n∑
j=1

α̂jEν1{xj �=Yj} ≤
n∑
j=1

α̂jEν̃1{xj �=Yj}.

Hence, √
f (x) –

√
fi(x(i)) ≤

n∑
j=1

α̂jEν̃

[
1{xj �=Yj} – 1{x(i)j �=Yj}

]
= α̂iEν̃

[
1{xi �=Yi} – 1{x(i)i �=Yi}

]
≤ α̂i,

so (√
f (x) –

√
fi(x(i))

)2

≤ α̂2
i .

Finally, since fi(x(i) ≤ f (x),
n∑
i=1

(
f (x) – fi(x(i))

)2
=

n∑
i=1

(√
f (x) –

√
fi(x(i))

)2 (√
f (x) +

√
fi(x(i))

)2

≤
n∑
i=1

α̂2
i 4f (x)

≤ 4f (x). �
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Remark 7.2 Note that it follows from the proof above that

n∑
i=1

(√
f (x) –

√
fi(x(i))

)2

≤ 1,

which implies, by the Efron–Stein inequality, that Var (dT(A,X)) ≤ 1. By Theorem
6.7, this property also implies that

P
{
dT(A,X) – EdT(A,X) > t

} ≤ e–t
2/2.

This inequality is useful when P{A} ≥ 1/2 because in that caseM dT(A,X) = 0, and
by the bound for the variance, we have EdT(A,X) ≤

√
Var (dT(A,X)) ≤ 1. Thus, for

all A ⊂ X n with P{A} ≥ 1/2,

P{A}P
{
dT(A,X) > t

} ≤ e–(t–1)
2/2,

which is just like the convex distance inequality.However, by this argument one cannot
handle sets with small probability, which is important in many applications.

7.5 Convex Lipschitz Functions Revisited

Recall that in Section 6.6 we derived upper tail inequalities for convex Lipschitz functions
(with respect to the Euclidean norm) of independent bounded random variables. The con-
vex distance inequality may also be used to prove such a result. Moreover, we also obtain an
analogous lower tail inequality.

The key is the following lemma which relates the Euclidean distance of a point to a
convex subset of [0, 1]n and the convex distance dT .

For any A ⊂ [0, 1]n and x ∈ [0, 1]n, define by

D(x,A) = inf
y∈A ‖x – y‖

the Euclidean distance of x and A (where ‖ · ‖ denotes the Euclidean norm).

Lemma 7.11 Let A ⊂ [0, 1]n be a convex set and let x = (x1, . . . , xn) ∈ [0, 1]n. Then

D(x,A) ≤ dT(x,A).

Proof The key to the proof is the saddle point representation (7.1) of the convex distance.
Recall that M(A) is the set of all probability measures on A and Y = (Y1, . . . , Yn)
denotes a random vector distributed according to a ν ∈ M(A). Then
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D(x,A) = inf
ν∈M(A)

‖x – EνY‖ (since A is convex)

≤ inf
ν∈M(A)

√√√√ n∑
j=1

(
Eν1{xj �=Yj}

)2 (since xj, Yj ∈ [0, 1])

= inf
ν∈M(A)

sup
α:‖α‖≤1

n∑
j=1

αjEν1{xj �=Yj} (by Cauchy–Schwarz)

= dT(x,A). �

The following concentration inequality for convex Lipschitz functions now follows eas-
ily. In fact, it suffices to assume that f is quasi-convex, that is, {x : f (x) ≤ s} is a convex set
for all s ∈ R.

Theorem 7.12 Let X = (X1, . . . ,Xn) be a vector of independent random variables taking val-
ues in the interval [0, 1] and let f : [0, 1]n → R be a quasi-convex function such that
| f (x) – f (y)| ≤ ‖x – y‖ for all x, y ∈ [0, 1]n. Then f (X) satisfies, for all t > 0,

P{f (X) > M f (X) + t} ≤ 2e–t
2/4

and

P{f (X) < M f (X) – t} ≤ 2e–t
2/4.

Proof For some s ∈ R, define the set As = {x : f (x) ≤ s} ⊂ [0, 1]n. Because of quasi-
convexity, As is convex. By the Lipschitz property and Lemma 7.11, for all x ∈ [0, 1]n,

f (x) ≤ s + D(x,As) ≤ s + dT(x,As),

so the convex distance inequality implies

P{f (X) ≥ s + t}P{f (X) ≤ s} ≤ e–t
2/4.

Take s = M f (X) to get the upper tail inequality and s = M f (X) – t to get the lower
tail inequality. �

7.6 Bin Packing

We now describe an application of the convex distance inequality for the bin packing
discussed in Section 3.2.

Let f (x) denote the minimum number of bins of size 1 into which the numbers
x1, . . . , xn ∈ [0, 1] can be packed. We consider the random variable Z = f (X) where
X1, . . . ,Xn are independent, taking values in [0, 1]. The bounded differences inequality
implies that
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P{|Z – EZ| ≥ t} ≤ 2e–t
2/n.

However, when the Xi are typically much smaller than 1, one expects that Z behaves simil-
arly to

∑n
i=1 Xi. The following result shows that, in fact, the typical deviations of Z are of a

much smaller order when E
∑n

i=1 X
2
i � n.

Corollary 7.13 Denote� =
√
E
∑n

i=1 X
2
i . Then for each t > 0,

P
{
|Z –MZ| ≥ t + 1

} ≤ 8e–t
2/(16(2�2+t)).

Proof First observe (and this is the only specific property of f we use in the proof) that for
any x, y ∈ [0, 1]n,

f (x) ≤ f (y) + 2
∑
i:xi �=yi

xi + 1.

To see this it suffices to show that the xi for which xi �= yi can be packed into at most⌊
2
∑

i:xi �=yi xi
⌋
+ 1 bins. For this, it is enough to find a packing such that atmost one bin

is less than half full. Such a packingmust exist because we can always pack the contents
of two half-empty bins into one.

Denoting by α = α(x) ∈ [0,∞)n the unit vector x/‖x‖, we clearly have∑
i:xi �=yi

xi = ‖x‖
∑
i:xi �=yi

αi = ‖x‖dα(x, y).

Let a be a positive number and define the set Aa = {y : f (y) ≤ a}. Then, by the argu-
ment above and by the definition of the convex distance, for each x ∈ [0, 1]n there
exists y ∈ Aa such that

f (x) ≤ f (y) + 2
∑
i:xi �=yi

xi + 1 ≤ a + 2‖x‖dT(x,Aa) + 1,

from which we conclude that for each a > 0, Z ≤ a + 2‖X‖dT(X,Aa) + 1. Thus,
writing� =

√
E
∑n

i=1 X
2
i for any t ≥ 0,

P{Z ≥ a + 1 + t}

≤ P
{
Z ≥ a + 1 + t

2‖X‖
2
√
2�2 + t

}
+ P

{
‖X‖ ≥ √

2�2 + t
}

≤ P
{
dT(X,Aa) ≥ t

2
√
2�2 + t

}
+ e–(3/8)(�

2+t)

where the bound on the second term follows by a simple application of Bernstein’s
inequality (see Exercise 7.17).

To obtain the desired inequality, we use the obtained bound with two different
choices of a. To derive a bound for the upper tail of Z, we take a = MZ. Then
P{Aa} ≥ 1/2 and the convex distance inequality yields
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P{Z ≥ MZ + 1 + t} ≤ 2
(
e–t

2/(16(2�2+t)) + e–(3/8)(�
2+t)
)
≤ 4e–t

2/(16(2�2+t)).

We obtain a similar inequality in the same way for P{Z ≤ MZ – 1 – t} by taking
a = MZ – t – 1. �

7.7 Bibliographical Remarks

The connection between concentration inequalities and isoperimetric properties goes back
to Lévy (1951) and has been an important research area in functional analysis and high-
dimensional geometry. The importance of measure concentration in the asymptotic theory
of Banach spaces is summarized in the now classical book of Milman and Schechtman
(1986) where many of the early results are summarized. The more recent book of Ledoux
(2001) is an excellent summary of measure concentration and its connections with iso-
perimetry and related geometric concepts. We recommend the surveys of Ball (1997),
Schechtman (2003), and Gardner (2002) for the background, history, and many pointers
to the related literature.

The inequalities of Theorem 7.1 were first pointed out by Lévy (1951) who also
proved the isoperimetric theorem on the surface of the Euclidean ball in Rn, along with
Schmidt (1948). For extensions of Lévy’s proof to Riemannian manifolds with positive
curvature seeGromov (1980). TheGaussian isoperimetric theorem is due to Borell (1975)
and Tsirelson and Sudakov (1974).

The vertex isoperimetric theorem for the discrete cube (Theorem 7.6) goes back to
Harper (1966). Several simpler proofs have been published (see Katona (1975), Kleitman
(1979), and Frankl and Füredi (1981)). A natural generalization of the discrete cube
includes n-fold products of graphs. Given a graphwith vertex setG and edge setE, the n-fold
product of the graph has vertex setGn = G× · · · × G, and two vertices g1 = (g1,1, . . . , g1,n)
and g2 = (g2,1, . . . , g2,n) are connected if and only if g1 and g2 agree in all but one compon-
ent; if they differ in the i-th component then g1,i and g2,i are connected in the original graph.
If G is K2 (i.e. the complete graph on two vertices) then the product graph is just the bin-
ary hypercube. If G is a chain of length k then the product is a so-called grid graph. For grid
graphs, Bollobás and Leader (1991b) established a vertex isoperimetric theorem, thus gen-
eralizing Harper’s theorem. In general, there are very few examples of product graphs for
which exact isoperimetric theorems have been established.

Bezrukov and Serra (2002) established a very general result which provides a powerful
tool for finding further examples. On the other hand, isoperimetric inequalities have been
established in great generality. For example, Alon and Milman (1985) show that if G is
connected then powers of G form a Lévy family, that is, there exist constants C1 and C2
(depending on G) such that for any set A ⊂ Gn whose cardinality is at least half of the car-
dinality ofGn, the complement of the t-blowup ofA (defined in terms of the graph distance)
is at most C1|Gn|e–C2t . Using martingale techniques, Bollobás and Leader (1991a) show a
bound of the type C1|Gn|e–C2t2 .

Theorem 7.8 is due to Bollobás and Leader (1991b). For surveys on discrete isoperimet-
ric inequalities we refer to Leader (1991) and Bezrukov (1994).
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The “isoperimetric” approach to concentration inequalities was promoted and
developed, in large part, in a remarkable series of papers byTalagrand (1995, 1996b, 1996c).
The convex-distance inequality presented in Section 7.4 is perhaps the most useful repres-
entative of a family of inequalities established by Talagrand. The original proof (and its
variants) is based on an induction argument, different from the one based on the entropy
method presented here. We note that Talagrand’s original proof gives a better constant
in the exponent (e–t2/4 instead of e–t2/10). For several extensions and variations we refer
to Talagrand (1995, 1996b, 1996c). Steele (1996), McDiarmid (1998), and Molloy and
Reed (2002) survey a large variety of applications of the convex distance inequality. Pollard
(2007) revisits Talagrand’s original proof in order to make it more transparent. The proof
presented here appears in Boucheron, Lugosi, andMassart (2009).

Theorem 7.12 is due to Talagrand (1996c).
The application of the convex distance inequality for the bin packing problem appears in

Talagrand (1995).
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7.8 E X ERC I S E S

7.1. Let X be a metric space, let X be an X -valued random variable distributed accord-
ing to the probability measure P, and let α(t) be the corresponding concentration
function. Let ε > 0. Show that if B ⊂ X is such that P{B} ≥ ε and t0 is such that
α(t0) < ε, then

α(t) ≥ P{d(X,B) ≥ t0 + t}.

7.2. (A VARIANT OF THEOREM 7.2) Show that if β : R+ → [0, 1] is a function such
that for every Lipschitz function f : X → Rwith Lipschitz constant 1

P{ f (X) ≥ Ef (X) + t} ≤ β(t),

then β(t) ≥ α(t/2). (See Ledoux (2001).)
7.3. (LAPLACE FUNCTIONAL) Define the Laplace functional by

L(λ) = sup
f
Eeλf (X)

where the supremum is taken over all Lipschitz functions f : X → Rwith Lipschitz
constant 1 such that Ef (X) = 0. Show that for all t > 0,

α(t) ≤ inf
λ>0

e–λt/2L(λ).

(See Ledoux (2001).)



234 | CONCENTRAT ION AND I SO P E R IM ETR Y

7.4. (LAPLACE FUNCTIONAL OF A BOUNDED METRIC SPACE) Denote the diameter of
X byD = supx,y∈X d(x, y) and assumeD < ∞. Show that

L(λ) ≤ eD
2λ2/8.

(See Ledoux (2001).)
7.5. (LAPLACE FUNCTIONAL OF A PRODUCT SPACE) Let (X1, d1), . . . , (Xn, dn)

be metric spaces with corresponding Borel σ -algebras and probability measures
P1, . . . ,Pn, respectively. Let P = ⊗n

i=1Pi be the product measure on the cartesian
product space X = X1 × · · · × Xn. X is a metric space with distance function
d(x, y) =

∑n
i=1 d(xi, yi). Show that if Li(λ) denotes the Laplace functional of Xi

(i = 1, . . . , n) and L(λ) is the Laplace functional of the product spaceX , then

L(λ) ≤
n∏
i=1

L(λi).

(See Ledoux (2001).)
7.6. (YET ANOTHER PROOF OF THE BOUNDED DIFFERENCES INEQUALITY)

Combine the previous three exercises to get the following general version of the
bounded differences inequality. LetX1, . . . ,Xn be independent randomvariables tak-
ing values in the metric spaces (X1, d1), . . . , (Xn, dn), respectively. Let f : X → R

be such that for all x = (x1, . . . , xn) ∈ X and y = (y1, . . . , yn) ∈ X ,

| f (x) – f (y)| ≤
n∑
i=1

di(xi, yi).

Show that ifDi denotes the diameter ofXi, then

P{| f (X1, . . . ,Xn) – Ef (X1, . . . ,Xn)| > t} ≤ 2 exp
(
–

t2∑n
i=1 D

2
i

)
.

(See Ledoux (2001).)
7.7. Show that if B denotes the Euclidean ball in Rn with radius 1, then

Vol(∂B) = nVol(B).
7.8. (GORDON’S INEQUALITY) Prove that if �(t) = (2π)–1/2

∫ t
–∞ e–x2/2dx denotes the

standard normal distribution function and φ(t) = (2π)–1/2e–t2/2 is the standard
normal density, then for all t > 0,

t
t2 + 1

≤ 1 – �(t)
φ(t)

≤ 1
t
.

(See Gordon (1941), see also Birnbaum (1942).)
7.9. Show that for

√
2/n ≤ s ≤ 1, the normalized surface area of a spherical cap of height

1 – s in Sn–1 satisfies
1

6s
√
n
(1 – s2)

n–1
2 ≤ μ(C(u, s)) ≤ 1

2s
√
n
(1 – s2)

n–1
2 .

(See e.g. Brieden et al. (2001).)
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7.10. Extend the argument given in Section 7.2 for the proof of an isoperimetric inequality
on the surface of the Euclidean ball to more general norms as follows. Consider a
norm ‖ · ‖ onRn and define itsmodulus of convexity by

δ(ε) = inf
x,y∈R:‖x‖≤1,‖y‖≤1,‖x–y‖≥ε

(
1 –

∥∥∥x + y
2

∥∥∥) .
Let S = {x ∈ Rn : ‖x‖ = 1} be the “surface” of the unit ball in this norm and define
the measureμ on S by

μ(A) =
Vol(∪a∈[0,1]a · A)
Vol({x : ‖x‖ ≤ 1})

, A ⊂ S.

Show that for any measurable set A ⊂ S, the t-blowup At of A satisfies

μ(Ac
t) ≤

2
μ(A)

e–2nδ(t/2)

(see Schechtman (2003) who also gives the history of this result).

The following few exercises ask the reader to prove Harper’s vertex isoperimetric theorem
(Theorem 7.6). Each exercise is a main step of the proof given by Kleitman (1979); see also
Leader (1991).

7.11. (HARPER’S THEOREM: COMPRESSION) The proof of Harper’s vertex isoperimet-
ric theorem sketched here is based on the idea of compression. Let A ⊂ {–1, 1}n and
define the i-sections of A by

A(i–) =
{
x(i,–1) = (x1, . . . , xi–1, –1, xi+1, . . . , xn) : x(i,–1) ∈ A

}
and

A(i+) =
{
x(i,1) = (x1, . . . , xi–1, 1, xi+1, . . . , xn) : x(i,–1) ∈ A

}
.

Let S(i,–)N (and S(i,+)N ) denote the set of firstN elements in the simplicial ordering of all
vectors whose i-th component is 0 (and 1, respectively). Let Ci(A) be the set whose
i-sections are S(i,–)|A(i–)| and S(i,+)|A(i+)|. Clearly, |Ci(A)| = |A|. Prove that ∂V(Ci(A)) ≤
∂V(A).

7.12. (HARPER’S THEOREM: ITERATION) Given A ⊂ {–1, 1}n, define a sequence of sets
recursively as follows: let A0 = A. Having defined A0,A1, . . . ,Ak, let i ∈ {1, . . . , n}
be any index such that Ci(Ak) �= Ak and define Ak+1 = Ci(Ak). If no such i exists, the
process terminates. Show that the process terminates after a finite number of steps,
that is, there exists a k such that Ak = Ci(Ak) for every i = 1, . . . , n. Note that if B
denotes the set obtained at the end of the process, then by the previous exercise,
|B| = |A| and ∂V(B) ≤ ∂V(A).

7.13. (HARPER’S THEOREM: CONCLUSION) Let B be a set such that Ci(B) = B for every
i = 1, . . . , n. Show that either B = S|B| or, if n is even,

B =
{
x ∈ {–1, 1}n : ‖x‖ <

n
2

}
∪
{
x ∈ {–1, 1}n : ‖x‖ =

n
2
, x1 = 1

}
– {y} ∪ {z}
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where y = (y1, . . . , yn) is such that yi = 1 if and only if i ∈ {1, (n/2) + 2, (n/2) +
3, . . . , n}, and z = (z1, . . . , zn) is such that zi = 1 if and only if i ∈ {2, 3, . . . ,
(n/2) + 1} or, if n is odd,

B =
{
x ∈ {–1, 1}n : ‖x‖ <

n
2

}
– {y} ∪ {z}

where y = (y1, . . . , yn) is such that yi = 1 if and only if i ∈ {(n + 3)/2,
(n + 5)/2, . . . , n} and z = (z1, . . . , zn) is such that zi = 1 if and only if i ∈ {1, 2, . . . ,
(n + 1)/2}. Complete the proof of Harper’s vertex isoperimetric theorem by
noting that the two exceptional sets defined above have a larger boundary than the
corresponding set S|B|.

7.14. Check that the conditions of Sion’s minmax theorem are satisfied in the represent-
ation of the convex distance as a saddle point in the proof of Lemma 7.10 (see
Boucheron, Lugosi, andMassart (2003)).

7.15. (CONVEX DISTANCE AND CONFIGURATION FUNCTIONS) Recall the definition
of a configuation function from Chapter 3. Assume f : X n → N is a configuration
function. Let Aa =

{
x : x ∈ X n, f (x) ≤ a

}
. Check that for all x ∈ X n,

f (x) ≤ a +
√
f (x)dT(x,Aa).

Let P denote a product probability distribution overX n. LetMZ denote a median of
Z = f (X) under P. Using Talagrand’s convex distance inequality, show that

P {Z ≥ MZ + t} ≤ 2e–
t2

4(MZ+t) ,

and

P {Z ≤ MZ – t} ≤ 2e–
t2

4MZ ,

Hint: the function t �→ (t – a)/
√
t is increasing for t ≥ a (see Talagrand (1995)).

7.16. Prove the following extension of Theorem 7.12. Let X = (X1, . . . ,Xn) be a vec-
tor of independent random variables taking values in the interval [0, 1] and let
f : [0, 1]n → R be a quasi-convex function. Suppose that there exists a convex set
S ⊂ [0, 1]n such that | f (x) – f (y)| ≤ ‖x – y‖ for all x, y ∈ SwhereP{X /∈ S} < 1/2.
Then f (X) satisfies, for all t > 0,

P{ f (X) > M f (X) + t} ≤ P{X /∈ S} +
1

1/2 – P{X /∈ S}
e–t

2/4

and

P{ f (X) < M f (X) – t} ≤ 2P{X /∈ S} + 2e–t
2/4

(Talagrand (1996c)).
7.17. Let X1, . . . ,Xn be independent random variables taking values is [0, 1]. Show that

P

⎧⎨⎩
√√√√ n∑

i=1

X2
i ≥

√√√√2E
n∑
i=1

X2
i + t

⎫⎬⎭ ≤ e–(3/8)(E
∑n

i=1 X
2
i +t).



8

The TransportationMethod

In this chapter we present the main ideas behind a different way of proving concentra-
tion inequalities that we call the transportation method. It is based on a beautiful idea of
coupling and provides a simple and elegant approach that leads to concentration inequal-
ities, some of which are difficult to prove with other general methods such as the ones
described in Chapter 6. One of the strengths of the transportation method is that it is pos-
sible to extend it to weakly dependent random variables. However, we do not pursue this
here.

The method is best described using the same basic framework defined in the previ-
ous chapters, that is, we let X1, . . . ,Xn be independent random variables taking values
in a (measurable) set X and consider a measurable function f : X n → R of n vari-
ables. As before, we define the real random variable Z = f (X1, . . . ,Xn). Once again,
we need some general assumptions of regularity that can be formalized as follows. Let
d : X × X → [0,∞) be a nonnegative function (typically a pseudo-metric) and let
c1, . . . , cn ≥ 0 be constants. We assume that f satisfies the Lipschitz-type property

f (y) – f (x) ≤
n∑
i=1

cid (xi, yi) (8.1)

for all x, y ∈ X n.
To demonstrate how transportation and concentration inequalities are connected, we

recall the transportation lemma (Lemma 4.18) whose most basic special case states the fol-
lowing. Let Z be a real-valued random variable defined on a probability space (�,A, P).
The logarithm of the moment-generating function ψZ –EPZ(λ) = logEP exp(λ(Z – EPZ))
of the real-valued random variable satisfies

ψZ –EPZ(λ) ≤
vλ2

2
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for every λ > 0 for some v > 0 if and only if for any probability measure Q absolutely
continuous with respect to P and such thatD(Q‖P) < ∞,

EQ f – EPf ≤
√
2vD(Q‖P).

(Recall that EP denotes integration with respect to the probability measure P.)
The lemma above suggests that one may prove sub-Gaussian concentration inequalit-

ies for Z = f (X1, . . . ,Xn) by proving a “transportation” inequality as above. The key to
achieving this relies on coupling.

For i = 1, . . . , n, denote by Pi the distribution of Xi, and let P = P1 ⊗ · · · ⊗ Pn be the
joint (product) distribution ofX1, . . . ,Xn onX n. Consider a probabilitymeasureQ onX n,
absolutely continuouswith respect toP and letY be a random variable (defined on the same
probability space as X) such that Y has distribution Q . We say that the joint distribution
P of the pair (X, Y) is a “coupling” of P and Q and we write P(P,Q) for the collection
of all such probability distributions. Then, using the Lipschitz condition and the Cauchy–
Schwarz inequality,

EQ f – EPf = EP
[
f (Y) – f (X)

]
≤

n∑
i=1

ciEPd(Xi, Yi)

≤
(

n∑
i=1

c2i

)1/2 ( n∑
i=1

(EPd(Xi, Yi))
2

)1/2

.

Thus, it suffices to upper bound
n∑
i=1

(EPd(Xi, Yi))
2

by a constantmultiple ofD(Q‖P). In particular, if one is able to prove that for some positive
constant C

min
P∈P(P,Q)

n∑
i=1

(EPd(Xi, Yi))
2 ≤ 2CD (Q‖P), (8.2)

then it follows from the argument described above that ψZ – EPZ(λ) ≤ vλ2/2 where
v = C

∑n
i=1 c

2
i . This, of course, implies the sub-Gaussian concentration inequalities

P{Z ≥ EZ + t} ≤ e–t
2/(2v) and P{Z ≤ EZ – t} ≤ e–t

2/(2v).

The bulk of the work therefore lies in proving the coupling inequality (8.2). By a general
induction principle given in Lemma 8.13 at the end of this chapter, it suffices to prove the
inequality for n = 1. Thus, the quantity of interest is

min
P∈P(P,Q)

EPd(X, Y),
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which quantifies the “effort” required to transport a mass distributed according to P into a
mass distributed according to Q measured by the cost function d. This quantity is usually
called the transportation cost from Q to P relatively to d. The transportation problem asks
for constructing an optimal couplingP ∈ P(P,Q), that is, aminimizer of the transportation
cost EPd(X, Y). This explains the name transportation method for the technique of proving
concentration inequalities discussed in this chapter.

The rest of the chapter is organized as follows.We first consider the case d(x, y) = 1{x�=y}.
With this cost function, the Lipschitz condition (8.1) becomes just the bounded differences
condition and, in fact, we recover an alternative proof of the bounded differences inequal-
ity (Theorem 6.2). Still dealing with the case d(x, y) = 1{x�=y}, in Section 8.2 we generalize
the bounded differences condition by allowing the coefficients ci in (8.1) to depend on the
vector x. The resulting concentration inequalities do not have a proof based on the entropy
method (especially the lower-tail bounds). In Section 8.5 we present a refinement of these
ideas and use it to re-derive the Gaussian concentration inequality. The basic observation is
that one may weaken condition (8.1) and assume instead only that

f (y) – f (x) ≤ L

(
n∑
i=1

d2(xi, yi)

)1/2

if one is able to prove the stronger transportation inequality

min
P∈P(P,Q)

n∑
i=1

EPd2(Xi, Yi) ≤ CD(Q‖P).

Indeed, in this case the Cauchy–Schwarz inequality implies that for every coupling of P and
Q , one has

EQ f – EPf ≤ L

(
n∑
i=1

EPd2(Xi, Yi)

)1/2

,

and thereforeψZ –EPZ(λ) ≤ vλ2/2 with v = CL. We show that the strengthened transport-
ation inequality holds withC = 1 for the quadratic cost d2(x, y) = (x – y)2 in the case when
P is the standard Gaussian distribution on Rn. This provides an alternative proof of the
Gaussian concentration inequality.

8.1 The Bounded Differences Inequality Revisited

Perhaps the simplest way to illustrate how the transportationmethodworks is by re-proving
the bounded differences inequality of Theorem 6.2. Recall that f satisfies the bounded
differences condition if

|f (x1, . . . , xi, . . . , xn) – f (x1, . . . , yi, . . . , xn)| ≤ ci
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for all x, y ∈ X n, and i = 1, . . . , n. This implies that for all x, y ∈ X n,

|f (x) – f (y)| ≤
n∑
i=1

ci1{xi �=yi},

and therefore f satisfies condition (8.1) for the cost function d(t, t′) = 1{t�=t′}. According
to the argument described in the introduction of this chapter, we need to solve the
transportation problem for this cost function. Clearly,

min
P∈P(P,Q)

EPd(X, Y) = min
P∈P(P,Q)

P {X �= Y} .

The solution is given by the next lemma.

Lemma 8.1 If P and Q are probability distributions on the same space (�,A), then

min
P∈P(P,Q)

P {X �= Y} = V(P,Q)

where V(P,Q) denotes the total variation distance

V(P,Q) = sup
A∈A

|P(A) – Q(A)|.

Proof Note that if P ∈ P(P,Q), then

|P(A) – Q(A)| =
∣∣EP [1{X∈A} – 1{Y∈A}

]∣∣
≤ EP

[
|1{X∈A} – 1{Y∈A}|1{X�=Y}

] ≤ P{X �= Y},

which means that V(P,Q) ≤ infP∈P(P,Q) P{X �= Y}. Conversely, consider a probab-
ility measure μ which dominates P and Q and denote by p and q the corresponding
densities of P andQ with respect toμ. Then

a def= V(P,Q) =
∫

�

(p – q)+dμ =
∫

�

(q – p)+dμ = 1 –
∫

�

min(p, q)dμ

and sincewe can assume that a > 0 (otherwise the result is trivial), we define the prob-
ability measure P as a mixture P = aP1 + (1 – a)P2 where P1 and P2 are such that, for
any measurable and bounded function� ,

a2
∫

�×�

�(x, y)dP1(x, y) =
∫

�×�

(p(x) – q(x))+ (q(y) – p(y))+ �(x, y)dμ(x)dμ(y)

and

(1 – a)
∫

�×�

�(x, y)dP2(x, y) =
∫

�

min(p(x), q(x))�(x, x)dμ(x).
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It is easy to check that P ∈ P (P,Q). Moreover, since P2 is concentrated on the
“diagonal” {(x, y) : x = y}, we have P{X �= Y} = aP1{X �= Y} ≤ a. �

It remains for us to prove a transportation inequality of the form (8.2). Given the inter-
pretation of the variation distance as a transportation cost given by the previous lemma, it
is now natural to use Pinsker’s inequality (recall Theorem 4.19). This immediately gives us
(8.2) for n = 1.

Theorem 8.2 (MARTON’S TRANSPORTATION INEQUALITY) Let P = P1 ⊗ · · · ⊗ Pn be
a product probability measure on X n and let Q be a probability measure absolutely
continuous with respect to P. Then

min
P∈P(P,Q)

n∑
i=1

P2 {Xi �= Yi} ≤ 1
2
D(Q‖P),

where (X, Y) = (Xi, Yi)i=1, . . . , n has distribution P.

Proof We simply apply the general induction principle given in Lemma 8.13 at the end
of this chapter, noticing that the basic induction assumption is satisfied by combining
Pinsker’s inequality (Theorem 4.19) and Lemma 8.1. �

Putting everything together, we see that (8.2) is satisfied with C = 1/4, which implies
that if f : X n → R satisfies the bounded differences condition and X1, . . . ,Xn are inde-
pendent, then Z = f (X1, . . . ,Xn) is sub-Gaussian with variance factor

∑n
i=1 c

2
i /4, which

implies the bounded differences inequality of Theorem 6.2.

8.2 Bounded Differences in Quadratic Mean

Next we take a step further and relax the bounded differences condition. We assume that
f : X n → R satisfies

f (y) – f (x) ≤
n∑
i=1

ci(x)1{xi �=yi}

for some functions ci : X n → [0,∞), i = 1, . . . , n. Instead of forcing the ci to be bounded
we assume only that they are bounded in “quadratic mean” in the sense that

v def= E
n∑
i=1

c2i (X)

is finite. Under this assumption, the transportation method may be used as follows. Let Q
be a probability distribution, absolutely continuous with respect to P, the distribution of X.
Let P be a coupling of P andQ . Then
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EQ f – EPf ≤
n∑
i=1

EP
[
ci(X)P {Xi �= Yi | X}

]
which implies, by applying the Cauchy–Schwarz inequality twice,

EQ f – EPf ≤
n∑
i=1

(
EPc2i (X)

)1/2 (EP
[
P2 {Xi �= Yi | X}

] )1/2
≤
( n∑

i=1

EPc2i (X)

)1/2 ( n∑
i=1

EP
[
P2 {Xi �= Yi | X}

])1/2

.

Using our assumption on f , this implies

EQ f – EPf ≤ √
v

(
inf

P∈P(P,Q)

n∑
i=1

EP
[
P2 {Xi �= Yi | X}

])1/2

.

Thus, by the “road map” laid down in the introduction to this chapter, if we can prove the
inequality

inf
P∈P(P,Q)

n∑
i=1

EP
[
P2 {Xi �= Yi | X}

] ≤ 2D (Q‖P),

thenLemma4.18 impliesψZ –EZ(λ) ≤ vλ2/2 and the resulting sub-Gaussian tail inequality
with variance factor v. Since Lemma 8.13 is applicable, it suffices to prove the transportation
inequality above for n = 1. To this end, we first solve the corresponding transportation cost
problem.

A conditional transportation cost problem First we need to introduce the analog of
the total variation distance for our “conditional” transportation cost problem. Let P and Q
be probability distributions and let μ be a measure dominating P and Q simultaneously.
For concreteness, we may take μ = (P + Q)/2. Then we may consider p = dP/dμ and
q = dQ/dμ and define

d22(Q , P) =
∫

(p – q)2+
p

dμ.

Observe that this definition does not depend on the dominating measure. Indeed, if ν is
anothermeasure dominating P andQ simultaneously, thenμ is absolutely continuous with
respect to ν and setting g = dμ/dν and we may write∫

(dP/dν – dQ/dν)2+
dP/dν

dν =
∫

(gp – gq)2+
gp

dν =
∫

(p – q)2+
p

gdν = d22(Q , P).

We are now ready to prove an analog of Lemma 8.1.
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Lemma 8.3 Let P and Q be probability distributions on a common measurable space (�,A).
Then

min
P∈P(P,Q)

(
EP
[
P2 {X �= Y | X}] + EP

[
P2 {X �= Y | Y}] )

= d22(Q , P) + d22(P,Q).

Proof Letμ = (P + Q)/2 and denote by p and q the densities of P andQ with respect toμ.
Introducing p̃(x) = p(x)1{p(x)>0} + 1{p(x)=0}, notice that p̃(X) = p(X) with probabil-
ity one. Moreover, if P ∈ P(P,Q), then

P {X = Y | X} ≤ min
(
1,
q(X)
p̃(X)

)
with probability one. To see this, observe that for any nonnegative measurable
function h,

EP
[
h(X)P {X = Y | X}] = EP

[
h(X)1{X=Y}

]
≤ EP

[
h(Y)1{p(Y)>0}

]
= EP

[
h(X)

q(X)
p̃(X)

]
,

and therefore,

EP
[
h(X)

(
q(X)
p̃(X)

– P {X = Y | X}
)]

≥ 0

from which the claim follows. This implies that

EP
[
P2 {X �= Y | X}] ≥ EP

[(
1 –

q(X)
p̃(X)

)2

+

]
= d22(Q , P),

and therefore

d22(Q , P) ≤ inf
P∈P(P,Q)

EP
[
P2 {X �= Y | X}] .

Of course, symmetrically,

d22(P,Q) ≤ inf
P∈P(P,Q)

EP
[
P2 {X �= Y | Y}] ,

which implies that

d22(Q , P) + d22(P,Q)
≤ inf

P∈P(P,Q)

{
EP
[
P2 {X �= Y | X}] + EP

[
P2 {X �= Y | Y}]} .
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Conversely, if a = V(P,Q) = 0, there is nothing to prove. Otherwise we consider the
same coupling P ∈ P(P,Q) as in the proof of Lemma 8.1, that is, P is defined as a
mixture P = aP1 + (1 – a)P2 where P1 and P2 are such that, for any measurable and
bounded function� ,

a2
∫

�×�

�(x, y)dP1(x, y) =
∫

�×�

(p(x) – q(x))+(q(y) – p(y))+�(x, y)dμ(x)dμ(y)

and

(1 – a)
∫

�×�

�(x, y)dP2(x, y) =
∫

�

min(p(x), q(x))� (x, x) dμ(x).

By construction of this coupling, we have, with probability one,

P {X �= Y | X} =
(∫

�
(q(y) – p(y))+dμ(y)

a

)(
(p(X) – q(X))+

p(X)

)
=
(p(X) – q(X))+

p(X)
,

and therefore

EP
[
P2 {X �= Y | X}] = ∫

�

(p(x) – q(x))2+
p2(x)

p(x)dμ(x) = d22(Q , P).

Similarly we have

EP
[
P2 {X �= Y | Y}] = d22(P,Q),

concluding the proof of Lemma 8.3. �

The next step is an analog of Pinsker’s inequality in which d2 plays the role of the total
variation distance.

Lemma 8.4 Let P and Q be probability distributions on a common measurable space (�,A).
If Q is absolutely continuous with respect to P, then

d22(Q , P) + d22(P,Q) ≤ 2D(Q‖P).
Proof SinceQ � P, setting q = dQ/dP wemay write

d22(Q , P) + d22(P,Q) = EP
[
(1 – q(X))2+

]
+ EP

[
(q(X) – 1)2+

q(X)

]
.

Moreover, defining h(t) = (1 – t) log(1 – t) + t for t < 1 and h(1) = 1, we may write

D(Q‖P) = EP
[
h(1 – q(X))

]
= EP

[
h ((1 – q(X))+)

]
+ EP

[
h (–(q(X) – 1)+)

]
and the result follows by the inequalities
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h(t) ≥ t2

2
for t ∈ [0, 1] and h(–t) ≥ t2

2(1 + t)
for t ≥ 0

(recall Exercise 2.8). �

We are now ready to prove the main result of this section.

Theorem 8.5 (MARTON’S CONDITIONAL TRANSPORTATION INEQUALITY) Let
P = P1 ⊗ · · · ⊗ Pn be a product probability measure on X n and let Q be a probability
measure absolutely continuous with respect to P. Then

min
P∈P(P,Q)

EP

n∑
i=1

(
P2 {Xi �= Yi | Xi} + P2 {Xi �= Yi | Yi}

) ≤ 2D(Q‖P),

where (X, Y) = (Xi, Yi)i=1,...,n has distribution P.

Proof By Lemmas 8.3 and 8.4, for all i = 1, . . . , n and for every distribution ν which is
absolutely continuous with respect to Pi,

min
P∈P(Pi ,ν)

EP
[
P2 {Xi �= Yi | Xi} + P2 {Xi �= Yi | Yi}

] ≤ 2D (ν‖Pi).

The result follows by applying Lemma 8.13 withφ(x) = x2/2 andw(x, y) = 1{x�=y}. �

Marton’s conditional transportation inequality implies the following powerful concen-
tration inequality. It is, in essence, similar to some of the results of Chapter 6 but does not
follow from any of them.

Theorem 8.6 Let f : X n → R be a measurable function and let X1, . . . ,Xn be independent
random variables taking their values in X . Define Z = f (X1, . . . ,Xn). Assume that there
exist measurable functions ci : X n → [0,∞) such that for all x, y ∈ X n,

f (y) – f (x) ≤
n∑
i=1

ci(x)1{xi �=yi}.

Setting

v = E
n∑
i=1

c2i (X) and v∞ = sup
x∈X n

n∑
i=1

c2i (x),

for all λ > 0, we have

ψZ –EZ(λ) ≤ λ2v
2

and ψ–Z +EZ(λ) ≤ λ2v∞
2

.

In particular, for all t > 0,

P{Z ≥ EZ + t} ≤ e–t
2/(2v) and P{Z ≤ EZ – t} ≤ e–t

2/(2v∞).
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Proof Let P = P1 ⊗ · · · ⊗ Pn denote the distribution of the vector X = (X1, . . . ,Xn) and
let Q be a probability distribution on X n which is absolutely continuous with respect
to P. IfP is a coupling of P andQ , then, as we have seen at the beginning of this section,

EQ f – EPf ≤ √
v

(
n∑
i=1

EP
[
P2 {Xi �= Yi | X}

])1/2

,

and therefore

EQ f – EPf ≤ √
v

(
inf

P∈P(P,Q)

n∑
i=1

EP
[
P2 {Xi �= Yi | X}

])1/2

,

so by Theorem 8.5

EQ f – EPf ≤
√
2vD(Q‖P).

Since this inequality holds for all Q � P, by Lemma 4.18, we have ψZ –EZ(λ) ≤
λ2v/2, proving the bound for the upper tail of Z.

To prove the inequalities for the lower tail of Z, introduce g(x) = –f (x). Then the
condition on f implies that for all x, y ∈ X n,

g(y) – g(x) ≤
n∑
i=1

ci(y)1{xi �=yi}.

Then, by repeating the argument at the beginning of the section, we get

EQ g – EPg ≤ √vQ

(
inf

P∈P(P,Q)

n∑
i=1

EP
[
P2 {Xi �= Yi | Y}

])1/2

,

where vQ =
∑n

i=1 Ec
2
i (Y). Unfortunately, vQ depends on Q and it is therefore not a

useful quantity. However, by bounding vQ ≤ v∞ and using Theorem 8.5, we get that,
for allQ � P,

EQ g – EPg ≤
√
2v∞D(Q‖P)

and again we may conclude using Lemma 4.18. �
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8.3 Applications ofMarton’s Conditional
Transportation Inequality

Next we illustrate the use of Theorem 8.6 by revisiting some examples from earlier chapters
such as the largest eigenvalue of a symmetricmatrix with independent entries, configuration
functions, and the bin packing problem.

Example 8.7 (THE LARGEST EIGENVALUE OF A RANDOM SYMMETRIC MATRIX)
Consider again the example already investigated in Examples 3.14 and 6.8. Let A be a
random symmetric realmatrix with entriesXi,j, 1 ≤ i ≤ j ≤ nwhereX theXi,j are inde-
pendent random variables with |Xi,j| ≤ 1. Let Z = λ1 denote the largest eigenvalue of
A. We already proved that Var (Z) ≤ 16 and that for all t > 0,

P {Z > EZ + t} ≤ e–t
2/32.

Here we show how Theorem 8.6 implies the same exponential bound and a sim-
ilar lower tail inequality. If x ∈ [–1, 1]n(n+1)/2 is a vector with components xi,j,
1 ≤ i ≤ j ≤ n, let A(x) =

(
(A(x))i,j

)
n×n denote the corresponding symmetric matrix

and λ1(x) its largest eigenvalue. Then for all x, y ∈ [–1, 1]n(n+1)/2,

λ1(x) – λ1(y) = sup
u∈Rn:‖u‖=1

uTA(x)u – sup
u∈Rn:‖u‖=1

uTA(y)u

≤ vT(A(x) – A(y))v
(where v = (v1, . . . , vn) is a unit vector maximizing uTA(x)u)

=
n∑
i=1

n∑
j=1

vivj
(
A(x)i,j – A(y)i,j

)
≤ 4

∑
1≤i≤j≤n

1{xi,j �=yi,j}|vivj|.

Since v only depends on x, the function f (x) = –λ1(x) satisfies the condition of
Theorem 8.6 with ci,j(x) = 4|vivj|. But

∑
1≤i≤j≤n ci,j(x)

2 ≤ 16 for all x and therefore
Theorem 8.6 implies the bounds

P {Z > EZ + t} ≤ e–t
2/32 and P {Z < EZ – t} ≤ e–t

2/32

for all t > 0.

Example 8.8 (CONFIGURATION FUNCTIONS) Recall from Section 3.3 the definition of
a configuration function f : X n → {1, 2, . . . , n}: a property � is a sequence of sets
�1 ⊂ X ,�2 ⊂ X 2, . . . ,�n ⊂ X n. For m ≤ n, a vector (x1, . . . xm) ∈ Xm satisfies
the property� if (x1, . . . xm) ∈ �m. Assume that� is hereditary so that if (x1, . . . xm)
satisfies � then so does any sub-sequence (xi1 , . . . xik) of (x1, . . . xm). The function f
that maps any vector x = (x1, . . . xn) to the size of a largest sub-sequence satisfying �

is the configuration function associated with property�.
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If f is a configuration function and X1, . . . ,Xn are independent random variables
taking values in X , then define Z = f (X1, . . . ,Xn). Since configuration functions are
self-bounding, Z satisfies the exponential inequalities of Theorem 6.12.

Let f be such a configuration function. For any x ∈ X n, fix a maximal sub-sequence
(xi1 , . . . , xim) satisfying property � (so that f (x) = m). Let ci(x) denote the indicator
that xi belongs to the sub-sequence (xi1 , . . . , xim). Thus,

∑n
i=1 ci(x)

2 =
∑n

i=1 ci(x) =
f (x). It follows from the definition of a configuration function that for all x, y ∈ X n,

f (y) ≥ f (x) –
n∑
i=1

1{xi �=yi}ci(x).

This means that the function g = –f satisfies the condition of Theorem 8.6 with
v = EZ. Thus, the first inequality of Theorem 8.6 implies that

P{Z ≤ EZ – t} ≤ e–t
2/(2EZ).

Of course, we have already proved the same inequality as a consequence of Theorem
6.12.

To derive an exponential inequality for the upper tail of Z, we need to modify the
proof of Theorem 8.6. Since for all x, y ∈ X n

f (y) – f (x) ≤
n∑
i=1

ci(y)1{xi �=yi},

it follows from Theorem 8.5 that for allQ � P,

EQ f – EPf ≤
√
2D(Q‖P)EQ f ,

where P denotes the distribution of the vector X = (X1, . . . ,Xn). But then

EQ f – EPf ≤
√
2D(Q‖P)EPf + 2D(Q‖P)

(see Exercise 8.3). By Lemma 4.18 this implies

P{Z ≥ EZ + t} ≤ exp
(
–EZh1

(
2t
EZ

))
where h1(u) = 1 + u –

√
1 + 2u, or, equivalently,

P
{
Z – EZ ≥ √

2tEZ + 2t
}
≤ e–t

(recall the calculations of Section 2.4). This inequality is similar, though not quite as
sharp as the one that follows from Theorem 6.12.
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Example 8.9 (BIN PACKING) Consider once again the random bin packing problem
described in Example 3.3 and Section 7.6. Recall that f (x) denotes theminimum num-
ber of bins of size 1 so that the numbers x1, . . . , xn ∈ [0, 1] fit in f (x) bins. We write
Z = f (X) when X1, . . . ,Xn are independent, taking values in [0, 1]. In Section 7.6 we
used the convex distance inequality to derive exponential tail inequalities for Z. The
key property we used was that for all x, y ∈ [0, 1]n,

f (x) ≤ f (y) + 2
n∑
i=1

1{xi �=yi}xi + 1,

so introducing g(x) = –f (x), we have

g(y) ≤ g(x) + 2
n∑
i=1

1{xi �=yi}xi + 1.

This looks very much like the condition of Theorem 8.6 except for the additional “+1”
on the right-hand side. Thus, Theorem 8.6 is not directly applicable but Theorem 8.5
is still useful with a slight modification of the proof of Theorem 8.6. Indeed, it follows
byMarton’s conditional transportation inequality that, if P denotes the distribution of
X = (X1, . . . ,Xn) andQ is absolutely continuous with respect to P, then

EQ g – EPg ≤
√
2vD(Q‖P) + 1

where v = 4
∑n

i=1 EX
2
i . Then, by an easy application of Lemma 4.18, we have, for all

t > 0,

P{Z < EZ – t} ≤ exp
(

–(t – 1)2

8
∑n

i=1 EX
2
i

)
.

We leave the details to the reader as an easy exercise. This bound for the lower tail of
Z is slightly better than that which we obtained from the convex distance inequality.
However, by a direct application of Theorem 8.6 we do not get an interesting bound
for the upper tail because v∞ = supx 4

∑n
i=1 x

2
i = 4n leads to a bound that we could

prove in a simpler way by the bounded differences inequality.

8.4 The Convex Distance Inequality Revisited

The power of Theorem 8.6 is best demonstrated by showing how easily it implies
Talagrand’s convex distance inequality which we proved by the entropy method (and with
a suboptimal constant) in Section 7.4.
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Recall that if A ⊂ X n is a measurable set, then the convex distance of x ∈ X n to the set
A is defined as

dT(x,A) = sup
α∈[0,∞)n:‖α‖≤1

inf
y∈A

n∑
i=1

αi1{xi �=yi}.

Denote by c(x) = (c1(x), . . . , cn(x)) the vector of nonnegative components in the unit ball
for which the supremum is achieved. Then

dT(x,A) – dT(y,A) ≤ inf
x′∈A

n∑
i=1

ci(x)1{xi �=x′i} – inf
y′∈A

n∑
i=1

ci(x)1{yi �=y′i}

≤
n∑
i=1

ci(x)1{xi �=yi}.

This shows that f (x) = –dT(x,A) satisfies the condition of Theorem 8.6. Since∑n
i=1 ci(x)

2 ≤ 1 for all x, Theorem 8.6 ensures that if X is a vector of independent random
variables, then dT(X,A) is sub-Gaussian with variance factor 1. This property implies the
convex distance inequality as follows. Let Z = dT(X,A). By Theorem 8.6, for all t > 0,

P {Z – EZ ≥ t} ≤ e–t
2/2.

Since t2 ≥ –(EZ)2 + (t + EZ)2 /2, this upper tail inequality implies

P {Z – EZ ≥ t} ≤ e(EZ)
2/2e–(t+EZ)

2/4.

Replacing t by t – EZ, this inequality also implies that for t > 0,

P {Z ≥ t} ≤ e(EZ)
2/2e–t

2/4

(note that this bound is trivial whenever t ≤ EZ and therefore we may always assume that
t > EZ). On the other hand, using the left-tail bound

P {EZ – Z ≥ t} ≤ e–t
2/2

with t = EZ, we get

P{X ∈ A} = P{Z = 0} ≤ e–(EZ)
2/2.

Combining these bounds leads to

P{X ∈ A}P{Z ≥ t} ≤ e–t
2/4,

which is the convex distance inequality of Theorem 7.9.
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8.5 Talagrand’s Gaussian Transportation Inequality

The purpose of this section is to prove the following transportation inequality for the
standard Gaussian measure.

Theorem 8.10 Let P be the standard Gaussian probability measure on Rn and let Q be any
probability measure which is absolutely continuous with respect to P. Then

min
P∈P(P,Q)

n∑
i=1

EP(Xi – Yi)2 ≤ 2D(Q‖P).

Before proving the theorem, we show how it implies the Tsirelson–Ibragimov–Sudakov
inequality (Theorem 5.6), which we proved based on the Gaussian logarithmic Sobolev
inequality and Herbst’s argument.

Assume that f : Rn → R is a Lipschitz function, that is, for all x, y ∈ Rn,

f (y) – f (x) ≤ L

(
n∑
i=1

(xi – yi)2
)1/2

.

Then, by Jensen’s inequality, for every coupling P of P andQ � P, one has

EQ f – EPf = EP
[
f (Y) – f (X)

] ≤ L

(
n∑
i=1

EP(Xi – Yi)2
)1/2

.

Hence, Theorem 8.10 implies that

EQ f – EPf ≤
√
2L2D(Q‖P),

and it follows from Lemma 4.18 that ψZ –EZ(λ) ≤ L2λ2/2 for all λ > 0 where Z = f (X).
This implies the Gaussian concentration inequality.

Turning to the proof of Theorem 8.10, first note that the induction argument of Lemma
8.13 applies and therefore our main task is to deal with the one-dimensional case. Before
proving the result, we describe a classical result which shows that the solution of the trans-
portation cost problem for the quadratic loss is given by the so-called quantile transform,
sometimes also calledmonotone rearrangement.

Lemma 8.11 Let F and G be distribution functions on the real line. If X and Y are real-valued
random variables with distribution functions F andG, respectively,E[(X – Y)2] is minimal
when X and Y are defined by the quantile transform of the same uniform random variable,
that is, when X = F–1(U) and Y = G–1(U) where U is uniformly distributed on [0, 1].
The minimal value of E[(X – Y)2] is therefore∫ 1

0

(
F–1(t) – G–1(t)

)2 dt.
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Proof Since the marginal distributions of X and Y are given, minimizing E[(X – Y)2]
is equivalent to maximizing E[XY]. We begin with the case when X and Y are
nonnegative. Then, by Fubini’s theorem,

E[XY] = E
∫ ∞

0

∫ ∞

0
1{x<X}1{y<Y}dxdy

=
∫ ∞

0

∫ ∞

0
P {X > x, Y > y} dxdy.

Applying this formula to the variables F–1(U) andG–1(U) yields

E
[
F–1(U)G–1(U)

]
=
∫ ∞

0

∫ ∞

0
P
{
F–1(U) > x,G–1(U) > y

}
dxdy

=
∫ ∞

0

∫ ∞

0
P
{
U > max(F(x),G(y))

}
dxdy,

and therefore,

E
[
F–1(U)G–1(U)

]
=
∫ ∞

0

∫ ∞

0
min ((1 – F(x)), (1 – G(y))) dxdy

=
∫ ∞

0

∫ ∞

0
min (P {X > x} ,P {Y > y}) dxdy.

Since P {X > x, Y > y} ≤ min (P {X > x} ,P {Y > y}), we have shown that

E[XY] ≤ E
[
F–1(U)G–1(U)

]
.

Dealingwith the general case ismore complicated but relies basically on the same argu-
ments. DecomposingX and Y asX = X+ – X– and Y = Y+ – Y–, wewriteE[XY] as the
sum of four terms:

E[XY] = E[X+Y+] + E[X–Y–] – E[X–Y+] – E[X+Y–]. (8.3)

We now find that we can optimize each of these four terms individually. More pre-
cisely, the maximum of each term is achieved whenever X = F–1(U) and Y = G–1(U)
which, of course, implies the desired result. For the first two terms, this is clear since
the arguments above imply

E[X+Y+] ≤ E
[(
F–1(U)

)+ (G–1(U)
)+] ,

and similarly,

E[X–Y–] ≤ E
[(
F–1(U)

)– (G–1(U)
)–] .
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Next we study the third term. Using Fubini’s theorem once more, we may write

E[X–Y+] =
∫ ∞

0

∫ ∞

0
P {X ≤ –x, Y > y} dxdy.

Note that

P {X ≤ –x, Y > y} ≥ P {X ≤ –x} – P {Y ≤ y} ,

which means that

P {X ≤ –x, Y > y} ≥ (F(–x) – G(y))+ .

But the right-hand side of this inequality may be interpreted as

(F(–x) – G(y))+ = P
{
G(y) < U ≤ F(–x)

}
= P

{
F–1(U) ≤ –x,G–1(U) > y

}
,

and therefore,

P {X ≤ –x, Y > y} ≥ P
{
F–1(U) ≤ –x,G–1(U) > y

}
.

It remains to integrate this inequality on [0,∞)2 to conclude that

E[X–Y+] ≥ E
[(
F–1(U)

)– (G–1(U)
)+] .

Exchanging the roles of X and Y yields the same result for the fourth term in (8.3),
which finally leads to

E[XY] ≤ E
[
F–1(U)G–1(U)

]
.

To finish the proof, it remains to compute the minimal value of E[(X – Y)2] under
the marginal constraints X ∼ F and Y ∼ G. But we already know that the minimum is
achieved whenever X = F–1(U) and Y = G–1(U) and in this case,

E[(X – Y)2] = E
(
F–1(U) – G–1(U)

)2 = ∫ 1

0

(
F–1(t) – G–1(t)

)2 dt. �

Although it assists our understanding of the transportation approach to Gaussian con-
centration, we do not use Lemma 8.11 in the proof of Theorem 8.10 but, rather, prove
directly the following inequality for the quantile transform.
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Lemma 8.12 Let γ be the standard normal distribution on the real line and ν be some probab-
ility distribution which is absolutely continuous with respect to γ . Denote by � and G the
distribution functions of γ and ν and define the quantile transform

T = G–1 ◦ �.

If X is a standard normal variable, then Y = T(X) has distribution ν and

E[(X – Y)2] ≤ 2D(ν‖γ ).

Proof Denote by g the density of ν with respect to γ. Assume first that g is bounded by a
constant θ . We claim that this assumption implies that

|T(x)| ≤ 2|x| when |x| is large enough. (8.4)

Indeed, g ≤ θ implies that for all x, G(2x) ≤ θ�(2x). Moreover, by Gordon’s
inequality for the tail behavior of� (see Exercise 7.8),

– log�(x) ∼ x2

2
as x → –∞,

and, in particular,

lim
x→∞

�(2x)
�(x)

= 0.

Hence there exists x0 < 0, such thatG(2x) ≤ �(x) or, equivalently, 2x ≤ T(x) for all
x ≤ x0. A similar argument for the right tail leads to (8.4).

The key observation for proving the lemma is that

T′(x) =
φ(x)

g(T(x))φ(T(x))
,

where φ(t) = (2π)–1/2e–t2/2 denotes the standard normal density. Then wemay write

D(ν‖γ ) = E log g(Y)

= E
[
log

φ(X)
φ(Y)

– logT′(X)
]

= E
[
–
X2

2
+
Y2

2
– logT′(X)

]
≥ E

[
–
X2

2
+
Y2

2
+ 1 – T′(X)

]
where we use – log u ≥ 1 – u for u ≥ 0. From (8.4) we know, on the one hand, that Y
has a finite second ordermoment and, on the other hand, that lim|x|→∞ T(x)φ(x) = 0.
Hence, integrating by parts leads to
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–ET′(X) = –
∫ +∞

–∞
T′(x)φ(x)dx =

∫ +∞

–∞
T(x)φ′(x)dx

= –
∫ +∞

–∞
xT(x)φ(x)dx = –E[XY].

Then the inequality above becomes

D(ν‖γ ) ≥ E
[
–
X2

2
+
Y2

2

]
+ 1 – E[XY] =

E[(X – Y)2]
2

where we use EX2 = 1. This proves the lemma for the case when g is bounded.
The general case requires a truncation argument. We may assume D(ν‖γ ) < ∞

because otherwise there is nothing to prove. For any positive integer k, introduce the
(bounded) density

gk(x) =
min(g(x), k)

ck
,

where ck =
∫
min(g(x), k)φ(x)dx. By monotone convergence, the distribution func-

tion Gk of νk = gkφ, converges pointwise to G, so Tk = G–1
k ◦ � converges pointwise

to T. By Fatou’s lemma and using the fact that the statement is true in the bounded
case, we have

E
[
(X – T(X))2

] ≤ lim inf
k→∞

E
[
(X – Tk(X))

2
]
≤ 2 lim inf

k→∞
D (νk‖γ ).

To complete the argument, it remains to prove that lim infk→∞ D(νk‖γ ) = D(ν‖γ ).
Setting

H(u) = u log u,

we may write

D(νk‖γ ) = 1
ck

∫
H (min(g(x), k))φ(x)dx – log ck.

By monotone convergence, limk→∞ ck = 1. Moreover, since H increases on [1, +∞),
the sequence of functions H (min(g(x), k)) increases to H(g(x)) as k → ∞.
Furthermore, H is bounded from below by –e–1 and Lebesgue’s dominated conver-
gence theorem allows us to conclude that

lim
k→∞

∫
H (min(g(x), k))φ(x)dx =

∫
H (g(x))φ(x)dx,

and therefore limk→∞ D(νk‖γ ) = D(ν‖γ ), completing the proof of Lemma 8.12. �
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Now that the one-dimensional transportation cost inequality is available, it is very easy
to derive Talagrand’s transportation cost inequality for the Gaussian measure via Lemma
8.13.

Proof of Theorem 8.10 Starting from Lemma 8.12 we may apply Lemma 8.13 with
φ(x) = x/2 and w(x, y) = (x – y)2 to derive the theorem. �

8.6 Appendix: A General Induction Lemma

We close this chapter by a general induction principle that is an important part of the proofs
of Theorems 8.2, 8.5, and 8.10. It allows us to extend the one-dimensional transportation
inequalities to the multi-dimensional case.

Lemma 8.13 Let P =
⊗n

i=1 Pi be a product probability measure on a product measurable
space X n and let Q be a probability measure absolutely continuous with respect to P. Let
w : X × X → [0,∞) be ameasurable function and letφ : [0,∞) → [0,∞) be a con-
vex function. Suppose that for every i = 1, . . . , n and for every probability measure ν which
is absolutely continuous with respect to Pi,

min
P∈P(Pi ,ν)

φ (EPw(Xi, Yi)) ≤ D(ν‖Pi). (8.5)

Then

min
P∈P(P,Q)

n∑
i=1

φ (EPw(Xi, Yi)) ≤ D(Q‖P).

Similarly, if for every i = 1, . . . , n and for every probability measure ν � Pi

min
P∈P(Pi ,ν)

EP
[
φ (EP [w (Xi, Yi) | Xi]) + φ

(
EP
[
w(Xi, Yi) | Yi

])] ≤ D(ν‖Pi), (8.6)

then

min
P∈P(P,Q)

n∑
i=1

EP
[
φ
(
EP
[
w(Xi, Yi) | Xi

])
+ φ

(
EP
[
w(Xi, Yi) | Yi

])] ≤ D(Q‖P)

and, a fortiori,

min
P∈P(P,Q)

n∑
i=1

EP
[
φ
(
EP
[
w(Xi, Yi) | X

])
+ φ

(
EP
[
w(Xi, Yi) | Y

])] ≤ D(Q‖P).
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Proof We start with the case when assumption (8.5) holds. We prove, by induction on
k ≤ n, that for everyQ absolutely continuous with respect to Pk = ⊗k

i=1Pi,

min
P∈P(Pk ,Q)

k∑
i=1

φ (EPw(Xi, Yi)) ≤ D
(
Q‖Pk).

For k = 1, this is just assumption (8.5). Assume now that for any distribution Q ′,
absolutely continuous with respect to Pk–1, the coupling inequality

min
P∈P(Pk–1,Q ′)

k–1∑
i=1

φ (EPw(Xi, Yi)) ≤ D
(
Q ′‖Pk–1) (8.7)

holds. Now let g = dQ/dPk denote the density ofQ with respect to Pk. Then, using the
notationH(u) = u log u,

D
(
Q‖Pk) = ∫

X

[∫
X k–1

H (g(x, t)) dPk–1(x)
]
dPk(t).

Denoting by gk themarginal density gk(t) =
∫
X k–1 g(x, t)dPk–1(x) and by qk the corres-

ponding marginal distribution ofQ , qk = gkPk, we may write g(x, t) = g(x|t)gk(t) and
get, by Fubini’s theorem,

D
(
Q‖Pk) = ∫

X
gk(t)

[∫
X k–1

H
(
g(x|t)

)
dPk–1(x)

]
dPk(t) +

∫
X
H (gk(t)) dPk(t).

Introducing for any t ∈ X , the conditional distribution

dQ(x|t) = g(x|t)dPk–1(x),

the previous identity can be written as

D
(
Q‖Pk) = ∫

X
D
(
Q
(·|t) ‖Pk–1) dqk(t) + D (qk‖Pk),

which is known as the chain rule for relative entropy. Now (8.7) ensures that, for
any t ∈ X , there exists a probability distribution Pt on X k–1 × X k–1 belonging to
P
(
Pk–1,Q

(·|t)) such that
k–1∑
i=1

φ (EPt w(Xi, Yi)) ≤ D
(
Q
(·|t) ‖Pk–1),
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while (8.5) ensures that there exists a probability distributionQk onX × X belonging
toP (Pk, qk) such that

φ (EQkw(Xk, Yk)) ≤ D (ν‖Pk).

Hence,

D
(
Q‖Pk) ≥ ∫

X

k–1∑
i=1

φ (EPt w(Xi, Yi)) dqk(t) + φ (EQkw(Xk, Yk)),

and by Jensen’s inequality,

D
(
Q‖Pk) ≥ n–1∑

i=1

φ

[∫
X
EPt w(Xi, Yi)dqk(t)

]
+ φ (EQkw (Xk, Yk)). (8.8)

Now consider the probability distribution P on X k × X k with marginal distribution
Qk onX × X and such that the distribution of (Xi, Yi) for 1 ≤ i ≤ k – 1, conditionally
on (Xk, Yk), is equal to PYk . More precisely, for any measurable and bounded function
� : X k × X k → R,

∫
X k×X k �(x, y)dP(x, y) is defined by

∫
X×X

[∫
X k–1×X k–1

� [(x, xk), (y, yk)] dPyk(x, y)
]
dQk(xk, yk).

Then, by construction, P ∈ P
(
Pk,Q

)
. Moreover,

EPw(Xi, Yi) =
∫
X
EPt w(Xi, Yi)dqk(t) for all i ≤ k – 1

and

EPw(Xk, Yk) = EQkw(Xk, Yk),

and therefore we obtain from (8.8) that

D
(
Q‖Pk) ≥ k–1∑

i=1

φ (EPw(Xi, Yi)) + φ (EPw(Xk, Yk)).

If we now consider assumption (8.6), the proof is very similar and we just sketch it.
The induction argument ensures the existence of a coupling probability distribution
Pt onX k–1 × X k–1 belonging toP

(
Pk–1,Q

(
.|t
))

such that
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k–1∑
i=1

∫
X k–1

φ
(
EPt

[
w(Xi, Yi)|X1 = x1, . . . ,Xk–1 = xk–1

])
dPk–1(x1, . . . xk–1)

+
∫
X k–1

φ
(
EPt

[
w(Xi, Yi)|Y1 = y1, . . . , Yk–1 = yk–1

])
dQ(y1, . . . , yk–1|t)

≤ D
(
Q
(
.|t
) ‖Pk–1),

and one can define a coupling probabilityQk ∈ P (Pk, qk) such that

EQk

[
φ
(
EQk

[
w (Xk, Yk) |Xk

])
+ φ

(
EQk

[
w (Xk, Yk) |Yk

])] ≤ D (ν‖Pk).

We define the coupling probability P in exactly the same way as above. The proof can
be completed in a similar way as before by using the chain rule, Fubini’s Theorem, and
Jensen’s inequality. The last inequality of the theorem is easily obtained. �

8.7 Bibliographical Remarks

The transportation method for proving concentration inequalities was initiated by Marton
(1986), building on earlier work on information theory by Ahlswede, Gács and Körner
(1976) and Csiszár and Körner (1981). Marton first considered the case d(x, y) = 1{x�=y},
leading to the bounded differences inequality. Lemma 8.1 is due to Dobrushin (1970).
Lemma 8.1 is a special instance of the transportation cost problem. The interested reader
will find much more general results in Rachev (1991), including Kantorovich’s theorem
that relates the transportation cost to the bounded Lipschitz distance when the cost func-
tion is a distance and several analog coupling results for other types of distances between
probability measures like the Prohorov distance (see also Strassen’s theorem in Strassen
(1965)).

Theorem 8.2 is a slightly stronger form of the original result of Marton (1986). By the
Cauchy–Schwarz inequality, Theorem 8.2 implies that

min
P∈P(P,Q)

n∑
i=1

P {Xi �= Yi} ≤
√
n
2
D(Q‖P),

which is originally stated inMarton (1986).
The symmetric “Pinsker-type” inequality of Lemma 8.4 is due to Samson (2000).
The method is robust in the sense that it can be extended to functions of weakly

dependent variables (see Marton (1996b, 2003, 2004), Rio (2000), and Samson (2000)).
Thematerial in Section 8.2 is based onMarton (1996a) and Samson (2000). The results

of Section 8.5 are due to Talagrand (1996d). Lemma 8.11 goes back to Fréchet (1957).
For more on the topic we refer to Dembo (1997), Ledoux (2001), and Samson (2003).
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8.8 E X ERC I S E S

8.1. Use Marton’s transportation inequality (Theorem 8.2) to show that if P is a product
probability measure onX n then for any pair of measurable sets A,B ⊂ X n,

dH(A,B) ≤
√
n
2
log

1
P(A)

+

√
n
2
log

1
P(B)

where dH(A,B) = minx∈A,y∈B
∑n

i=1 1{xi �=yi} is the Hamming distance of A and B. What
do you obtain if you take B to be the complement of the t-blowup of A?

8.2. Complete the details of the proof of the inequality in Example 8.9 for the left tail of
the bin packing problem.

8.3. Let a > 0. Show that if x, y > 0 satisfy y – a√y ≤ x, then y ≤ x + a
√
x + a2.

8.4. LetF andGbe distribution functions on the real line. IfX andY are real-valued random
variables with distribution functions F and G, show that E |X – Y | is minimal when
X and Y are defined by the quantile transform of the same uniform random variable,
that is, when X = F–1(U) and Y = G–1(U) whereU is uniformly distributed on [0, 1].
Conclude that the minimal value of E |X – Y | under the marginal constraints X ∼ F
and Y ∼ G is ∫ 1

0

∣∣F–1(t) – G–1(t)
∣∣ dt.

(Hint: use the formula |X – Y | = X + Y – 2max(X, Y) and begin with the case where
X and Y are nonnegative).

8.5. Let F andG be distribution functions on the real line. Prove that∫ 1

0

∣∣F–1(t) – G–1(t)
∣∣ dt = ∫ +∞

–∞
|F(x) – G (x)| dx.

8.6. (RIO’S COVARIANCE INEQUALITY) Let X and Y be non-negative square-integrable
random variables with distributions functions F and G, respectively. Prove the follow-
ing bound, known as Fréchet’s inequality:

Cov(X, Y) ≤
∫ 1

0
F–1(t)G–1(t)dt –

∫ 1

0
F–1(t)dt

∫ 1

0
G–1(t)dt.

Let α be the (strong) mixing coefficient between X and Y defined as the supremum,
over all Borels sets A and B, of |Cov (1{X∈A},1{Y∈B})|. Prove that

|Cov(X, Y)| ≤
∫ ∞

0

∫ ∞

0
min (α,P {X > u} ,P {Y > v}) dudv
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and derive that

|Cov(X, Y)| ≤
∫ α

0
F–1(1 – t)G–1(1 – t)dt.

Let now X and Y be square integrable random variables, not necessarily non-negative.
Denoting by F and G the distribution functions of |X| and |Y | respectively, prove the
following covariance inequality:

|Cov(X, Y)| ≤ 2
∫ 2α

0
F–1(1 – t)G–1(1 – t)dt.

(Rio (1993).)



9

Influences and Threshold Phenomena

This chapter is devoted to the study of functions defined on the n-dimensional binary
hypercube {–1, 1}n. The n-cube, with the uniform distribution, is the simplest product
space and the tight connection between isoperimetric properties and concentration is
revealed in the most transparent manner. Logarithmic Sobolev inequalities and hypercon-
tractive estimates may be interpreted as generalized isoperimetric inequalities and have
interesting consequences for the geometry of the hypercube. We are mostly interested in
binary-valued (or Boolean) functions (or, equivalently, subsets of {–1, 1}n) though in some
cases it is convenient to deal with real-valued functions of the n binary variables.

An important notion that plays a crucial role in this chapter is the influence of a variable,
already introduced in Chapter 4. We start by recalling some simple general isoperimet-
ric inequalities for the hypercube, under the uniform distribution. In Section 9.2, using
a logarithmic Sobolev inequality on the binary n-cube, we derive an improvement of
the Efron–Stein inequality that implies some fundamental properties for influences of
binary-valued functions. This inequality is used in Section 9.3 to derive “local” exponen-
tial concentration inequalities. In Section 9.4 another inequality for the variance, due to
Talagrand, is proved.
Monotone sets play a central role in the study of influences, not only because their spe-

cial properties make them an important object to study but also because one of the most
important applications of the theory of influences, namely threshold phenomena, involves
monotone sets. Section 9.5 is devoted to properties of influences of monotone sets, still
under the uniform distribution.

Most results generalize easily to the case when the underlyingmeasure is the product of n
i.i.d. Bernoulli distributions with parameter p ∈ (0, 1). The tools developed in this chapter
allow one to study the evolution of the probability of monotone subsets of {–1, 1}n as p
grows from 0 to 1. In particular, we establish general conditions under which an abrupt
phase transition occurs around a certain critical value of p, that is, the probability of a mono-
tone set jumps from values close to 0 to close to 1 in a narrow interval. Such effects are
known as threshold phenomena and will be seen to occur for anymonotone set that does not
depend too much on any of the n variables.
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9.1 Influences

Consider a subset A of the n-cube {–1, 1}n and let P denote the uniform distribution on
{–1, 1}n so that P(A) = 2–n|A| where |A| denotes the cardinality of the set A. We often find
it convenient to work with Rademacher random variables X1, . . . ,Xn (i.e. the Xi are inde-
pendent symmetric sign variables). Then the binary vector X = (X1, . . . ,Xn) is uniformly
distributed in {–1, 1}n and P(A) = P{X ∈ A}.

Recall from Chapter 4 the definition of influence of a variable. We denote by
X(i) = (X1, . . . ,Xi–1, –Xi,Xi+1, . . . ,Xn) the vector obtained by flipping the i-th component
of the vector X and leaving the others intact. The influence of the i-th variable is

Ii(A) = P
{
1{X∈A} �= 1{X(i)∈A}

}
,

that is, the probability that changing the i-th variable changes the event X ∈ A. When this
happens (i.e. when 1{X∈A} �= 1{X(i)∈A}), we say that the i-th variable is pivotal for A.

The total influence is defined by the sum of individual influences

I(A) =
n∑
i=1

Ii(A).

Instead of subsets of {–1, 1}n, equivalently we may consider binary functions
f : {–1, 1}n → {0, 1}. Such functions are sometimes called Boolean. If f (x) = 1{x∈A}
then with some abuse of notation we can also write Ii( f ) for Ii(A) and I( f ) for I(A).

Example 9.1 (PARITY FUNCTION) Consider the parity function f : {–1, 1}n → {0, 1}
defined by f (x) = 1 if and only if the number of components of x = (x1, . . . , xn) equal
to 1 is even. In this case, clearly for every x ∈ {–1, 1}n, every variable is pivotal and
therefore Ii( f ) = 1 for all i = 1, . . . , n and I( f ) = n.

The parity function clearly maximizes the influence of all variables. The largest achiev-
able total influence dramatically decreases if one considers monotone functions. Recall
that a function f : {–1, 1}n → {0, 1} is monotone if it is monotone in each of its
variables, that is, f (x) = 1 implies f (x+i ) = 1 where x+i = (x1, . . . , xi–1, 1, xi+1, . . . , xn) is
obtained by fixing the i-th variable of x to be 1. If f is monotone, the corresponding set
A = {x : f (x) = 1} is called a monotone set. Monotone functions and sets play a central
role in this chapter for many reasons, one of which is that they minimize total influence
(see Theorem 9.10 below). One of the simplest monotone functions is the majority func-
tion that will be seen to maximize total influence among all monotone functions (see
Theorem 9.11).

Example 9.2 (MAJORITY FUNCTION) Let n be odd and define f (x) = 1 if and only
if
∑n

i=1 xi > 0. f is obviously monotone. Since the function is symmetric, all influ-
ences Ii( f ) are equal. The first variable is pivotal if and only if

∑n
i=2 xi = 0. Thus,
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I1(A) = P{B = (n – 1)/2} where B is a binomial random variable with parameters
(n – 1, 1/2). Therefore, for every i = 1, . . . , n, by Stirling’s formula,

Ii( f ) =
(

n – 1
(n – 1)/2

)
2–(n–1) ∼

√
2
nπ

and I( f ) ∼ √
2n/π .

An interesting question we pursue in this chapter is how small the total influence of a
function can be. A small total influence means that individual variables have little deciding
power over the outcome of the function, a desirable property, for example, when the com-
ponents represent votes ofmembers of a society and the function represents a certain voting
scheme.

The Efron–Stein inequality (Theorem 3.1) implies that

P(A)(1 – P(A)) = Var ( f (X)) ≤ 1
4

n∑
i=1

Ii(A) =
1
4
I(A).

In particular, if P(A) = 1/2, the total influence of A is at least 1. This bound is sharp
when the value of the function is determined by only one variable, for example when
f (x) = (xi + 1)/2 for some i ∈ {1, . . . , n}. Such a function is often called a dictatorship. Of
course, in such a case, the influence Ii(A) of the i-th variable equals one and the rest of
the variables have zero influence. If a function f is such that there exists a small number
of variables that determine the value of f , then f is called a junta. In this chapter we try to
understand the behavior of functions of many variables, so we think about n as a large num-
ber and “small” in the previous definitionmeans bounded, independently of n. Clearly, if f is
a junta depending on k variables then I( f ) ≤ k. A fundamental result proved below is that
any function with a small total influence is almost a junta in the sense that it can be tightly
approximated by a junta. For the rigorous statement see Theorem 9.7 below.

A natural question is how small can the total influence be if the function f is symmetric in
the sense that I1( f ) = · · · = In( f ) = I( f )/n. Below we reproduce a fundamental result of
Kahn, Kalai, and Linial, implying that the total influence of a symmetric function is at least
of the order of log n, substantially larger than that of a dictatorship or a junta.

9.2 Some Fundamental Inequalities for Influences

If P(A) < 1/2, the bound obtained for the total influence from the Efron–Stein inequality
is no longer sharp. One achieves a better bound by using the edge isoperimetric inequality
of Theorem 4.3. Recall that this inequality states that for any A ⊂ {–1, 1}n,

I(A) ≥ 2P(A) log2
1

P(A)
.
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Observe that the latter inequality is a special case of the logarithmic Sobolev inequality
Theorem 5.1 which states that for any real-valued function f : {–1, 1}n → R,

Ent( f 2) ≤ 2E( f )

where Ent( f 2) = E
[
f 2 log( f 2)

]
– E

[
f 2
]
log E

[
f 2
]
and

E( f ) = 1
4
E

[ n∑
i=1

(
f (X) – f

(
X(i)

))2]
.

Note that to lighten notation, we sometimes write E[ f ] for E[ f (X)] for any function
f : {–1, 1}n→R. Observe that the logarithmic Sobolev inequality applied for f (x)=1{x∈A}
recovers the edge isoperimetric inequality. The logarithmic Sobolev inequality of the
n-cube also implies the following simple bound that we will find useful.

Lemma 9.3 For any nonnegative function f : {–1, 1}n → [0,∞),

E
[
f 2
]
log

E
[
f 2
]

E [ f ]2
≤ 2E( f ).

Proof By Theorem 5.1 it suffices to prove that

Ent( f 2) = E
[
f 2 log( f 2)

]
– E

[
f 2
]
log E

[
f 2
] ≥ E

[
f 2
]
log

E
[
f 2
]

(E [ f ])2
.

This is trivial if f ≡ 0, otherwise, introducing g(x) = f (x)/
√
E [ f 2], it may be

re-written as

E
[
g2 log(g2)

] ≥ log
1

(E [g])2
,

or, equivalently,

E
[
g2 log

1
gE[g]

]
≤ 0.

This follows from the fact that log x ≤ x – 1 for x > 0 and that E
[
g2
]
= 1:

E
[
g2 log

1
gE[g]

]
≤ E

[
g2
(

1
gE[g]

– 1
)]

= 0. �

Next we prove an improvement of the Efron–Stein inequality that has various interesting
consequences for the total influence of Boolean functions defined on the n-cube.
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Consider a real-valued function f : {–1, 1}n → R. As in Section 3.1, we express f as a
sum of martingale differences for the natural filtration defined by the coordinate variables.
More precisely, introduce

fi(x) = 2i–n
∑

(xi+1,...,xn)∈{–1,1}n–i
f (x1, . . . , xn),

as the average of f over all binary vectors whose first i components agree with x, that is,
fi(X) = E[f (X)|X1, . . . ,Xi]. Thus, f0(x) = E[ f ] and fn(x) = f (x). Define the martingale
differences�i : {–1, 1}n → R by

�i(x) = fi(x) – fi–1(x), i = 1, . . . , n.

Recall from Section 3.1 that Var ( f ) =
∑n

i=1 E[�
2
i ] where we use the shorthand notation

Var ( f ) = Var ( f (X)). We have the following general result.

Theorem 9.4 For any f : {–1, 1}n → R,

Var ( f ) log
Var ( f )∑n
j=1
(
E|�j|

)2 ≤ 2E( f ).

Recall that the Efron–Stein inequality implies Var ( f ) ≤ E( f ). The inequality of
Theorem 9.4 presents an important improvement for functions defined on the binary
n-cube whenever

∑n
j=1
(
E|�j|

)2 � Var ( f ). We will see that this improvement has far-
reaching consequences.

Proof The theorem follows easily from Lemma 9.3 and the decomposition
E( f ) =∑n

i=1 E(�i). To prove this decomposition, write, for any j = 1, . . . , n,

E(�j)

=
1
4

n∑
i=1

E
[(

�j(X) – �j

(
X(i)

))2]

=
1
4

n∑
i=1

E
[(

�j(X) – �j

(
X(i)

))
·
((

fj(X) – fj
(
X(i)

))
–
(
fj–1(X) – fj–1

(
X(i)

)))]
=
1
4

n∑
i=1

E
[(

�j(X) – �j

(
X(i)

))
·
(
fj(X) – fj

(
X(i)

))]
=
1
4

n∑
i=1

E
[((

fj(X) – fj
(
X(i)

))
–
(
fj–1(X) – fj–1

(
X(i)

)))
·
(
fj(X) – fj

(
X(i)

))]
= E( fj) –

1
4

n∑
i=1

E
[((

fj–1(X) – fj–1
(
X(i)

)))
·
(
fj(X) – fj

(
X(i)

))]
= E( fj) – E( fj–1)
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where in the proof we used twice the fact that

n∑
i=1

E
[(

�j(X) – �j

(
X(i)

))
·
(
fj–1(X) – fj–1

(
X(i)

))]
= 0.

Summing the obtained equation we have

n∑
j=1

E(�j) =
n∑
j=1

(
E( fj) – E( fj–1)

)
= E( f ).

This follows from fn = f and f0 = E[ f ]. The theorem now follows easily by applying
Lemma 9.3 to the absolute value of the martingale differences�j:

E( f ) =
n∑
j=1

E(�j)

≥
n∑
j=1

E
(
|�j|

)

≥ 1
2

n∑
j=1

E
[
�2

j

]
log

E
[
�2

j

]
(
E|�j|

)2
= –

1
2
Var ( f )

n∑
j=1

E
[
�2

j

]
Var ( f )

log

(
E|�j|

)2
E
[
�2

j
]

≥ –
1
2
Var ( f ) log

∑n
j=1
(
E|�j|

)2
Var ( f )(

by Jensen’s inequality and
∑

j E
[
�2

j

]
= Var ( f )

)
.

�Rearranging, we obtain the stated inequality.

To understand what Theorem 9.4 has to do with influences, consider a binary-valued
function f : {–1, 1}n → {0, 1} and recall from the proof of Theorem 3.1 that

�i = Ei

[
f (X) – E(i)f (X)

]
where Ei and E(i) denote conditional expectation, conditioned on X1, . . . ,Xi and
X1, . . . ,Xi–1,Xi+1, . . . ,Xn, respectively. Thus, by Jensen’s inequality,

E|�i| ≤ E
[∣∣∣ f (X) – E(i)f (X)

∣∣∣] = Ii( f )
2

.
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Since for binary-valued functions E( f ) = I( f )/4, it follows from Theorem 9.4 that

n∑
i=1

Ii( f )2 ≥ 4 Var ( f ) exp
(
–

I( f )
2 Var ( f )

)
. (9.1)

Recall from the previous section that the total influence of any function is at least a constant,
namely –2P(A) log2 P(A). This, of course, implies that the largest influence of any variable
is at least of the order of 1/n. Equation (9.1) implies a fundamental improvement of this: for
every binary-valued function there exists a variable whose influence is at least of the order
of (log n)/n. In particular, the total influence of every symmetric function is at least of the
order of log n.

Theorem 9.5 Let f : {–1, 1}n → {0, 1} be a binary-valued function of n binary variables.
Then

n∑
i=1

Ii( f )2 ≥ Var ( f )2 log2 n
n

.

In particular,

max
i=1,...,n

Ii( f ) ≥ Var ( f ) log n
n

.

Proof Let ε = (2 log(Var ( f )/4) + 4 log log n)/ log n. We consider two cases. If
I( f ) ≥ (2 – ε) Var ( f ) log n, then by the Cauchy–Schwarz inequality,

n∑
i=1

Ii( f )2 ≥ 1
n

(
n∑
i=1

Ii( f )

)2

=
I( f )2

n
≥ (2 – ε)2 Var ( f )2 log2 n

n

and the stated bound holds since ε < 1. On the other hand, if I( f ) < (2 –
ε)Var ( f ) log n, then by (9.1),

n∑
i=1

Ii( f )2 ≥ 4 Var ( f ) exp
(
–

I( f )
2 Var ( f )

)
≥ Var ( f )2 log2 n

n

as desired. �

Theorem 9.5 implies that if f is a symmetric function of its n variables, then the total
influence is at least Var ( f ) log n, which is in sharp contrast with dictatorships and jun-
tas that have a constant total influence. This is an essential improvement over the bound
2P(A) log2(1/P(A)) that we derived from the edge isoperimetric inequality for an arbit-
rary function. The following example shows that the obtained bound cannot be improved
essentially.
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Example 9.6 (TRIBES) This example shows that there exist functions of n binary variables
whose largest influence is as small as O(n–1 log n). To construct such an example,
let � = #log2 n – log2 log2 n$ and assume, for simplicity, that n is an integer mul-
tiple of �. Divide the n variables x1, . . . , xn into n/� blocks of length � (the so-
called “tribes”) and define f (x) = 1 if there exists a block such that all variables are
equal to 1 in that block and let f (x) = 0 otherwise. First note that

P{ f (X) = 1} = 1 –
(
1 – 2–�

)n/� → 1
e

as n → ∞. The variable x1 is pivotal if and only if x2 = · · · = x� = 1 and no other block
has all variables equal to 1. The probability of this event is

I1( f ) = 2–(�–1)
(
1 – 2–�

)(n/�)–1
≤ 4 · 2– log2 n+log2 log2 n exp

(
–
(

n
�2�

–
1
2�

))
(using 1 – x ≤ e–x)

≤ 4 log2 n
n

e–1/2.

Since all variables of f have the same influence, the total influence is at most
I( f ) ≤ 4e–1/2 log2 n and

∑n
i=1 Ii( f )

2 ≤ (16e log22 n)/n, showing the tightness of
Theorem 9.5 up to constant factors.

Interestingly, onemay use Theorem 9.4 to derive another fundamental property of influ-
ences of a binary-valued function, namely that any function with a small (i.e. constant)
total influence must almost be determined by a small number of variables, in the sense that
there exists a junta that closely approximates the function. This is made precise in the next
theorem.

Theorem 9.7 Let f : {–1, 1}n → {0, 1} be a binary-valued function with total influence I( f )
and let ε ∈ (0, 1) be arbitrary. Let m = #I( f )/ε$. Then there exists a subset of m vari-
ables and a real-valued function g : {–1, 1}n → R depending on these m variables only
such that

E
[
( f – g)2

] ≤ I( f )
max(1, log(2/ε))

.

Note that if I( f ) is bounded (i.e. does not grow with n) and ε is a constant, the function
g is clearly a junta as it depends on a bounded number of variables. The error of approxima-
tion may be made arbitrarily small by choosing ε sufficiently small. The construction of g is
simple and intuitive: one identifiesm variables with largest influence (these are the variables
g depends on) and takes averages with respect to all other variables. The key for the proof
below is Theorem 9.4.
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Proof Without loss of generality we may assume that the variables are ordered by
decreasing influences, that is, I1( f ) ≥ · · · ≥ In( f ). Clearly, Ii( f ) < ε for all i > m by
the definition ofm, and therefore

n∑
i=m+1

Ii( f )2 ≤ I( f ) max
i=m+1,...,n

Ii( f ) ≤ I( f )ε.

Recall the martingale decomposition f (x) =
∑n

i=1 �i(x) =
∑n

i=1( fi(x) – fi–1(x))
introduced earlier in the proof of Theorem 9.4 and define g = fm. Clearly, g depends
onm variables only. In the rest of the proof we show that g approximates f as stated.

Recall from the proof of Theorem 9.4 that E( f ) =∑n
i=1 E(�i). Applying this

identity to f (x) – g(x) =
∑n

i=m+1 �i(x), we have

E( f ) =
n∑
i=1

E(�i) ≥
n∑

i=m+1

E(�i) ≥ E( f – g).

Next we apply Theorem 9.4 for f – g to get

I( f ) = 4E( f )
≥ 4E( f – g)

≥ 2 Var ( f – g) log
Var ( f – g)∑n
i=m+1

(
E|�i|

)2
≥ 2 Var ( f – g) log

4 Var ( f – g)∑n
i=m+1 Ii( f )2

(since E|�i| ≤ Ii( f )/2)

≥ 2 Var ( f – g) log
4 Var ( f – g)

I( f )ε
.

Rearranging, we have

4 Var ( f – g)
I( f )ε

log
4 Var ( f – g)

I( f )ε
≤ 2

ε
.

To solve this inequality for Var ( f – g), note that x log x ≤ y implies x ≤ 2y/ log y if
y ≥ e and x > 0. Therefore, when 2/ε > e, we have

4 Var ( f – g)
I( f )ε

≤ 4/ε
log(2/ε)

, that is, Var ( f – g) ≤ I( f )
log(2/ε)

.

To finish the proof note that E[ f –g]=0 and therefore E
[
( f –g)2

]
= Var ( f –g). �
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The previous theorem guarantees the existence of a real-valued function g that closely
approximates, in the L2 sense, the binary-valued function f . It is now easy to construct a
binary-valued junta that also approximates tightly f , see Exercise 9.1.

9.3 Local Concentration

In this section we apply Theorem 9.4 to derive local exponential concentration inequal-
ities for functions defined on the binary hypercube. We use the argument already shown
in Section 3.6, the only difference being that the Efron–Stein inequality is replaced by
the improved variance inequality of Theorem 9.4. The improved bounds imply local
sub-Gaussian tail bounds (as opposed to the sub-exponential estimates obtained in
Section 3.6).

Consider a function f : {–1, 1}n → R such that there exists a constant v > 0 such that
for all x ∈ {–1, 1}n,

n∑
i=1

(
f (x) – f

(
x(i)
))2

+
≤ v.

Recall that the quantiles of f are defined, for any α ∈ (0, 1), by

Q α = inf{z : P{f (X) ≤ z} ≥ α}.

As in Section 3.6, for any b ≥ a ≥ Mf = Q 1/2, we introduce the function ga,b : X n → R

by

ga,b(x) =

⎧⎨⎩
b if f (x) ≥ b
f (x) if a < f (x) < b
a if f (x) ≤ a

and observe that

Var (ga,b) ≥ P{ga,b(X) = b}
4

(b – a)2 =
P{ f (X) ≥ b}

4
(b – a)2.

Now, instead of the Efron–Stein inequality, we use Theorem 9.4 for the variance of ga,b.
Recall that this inequality implies

Var (ga,b) log
Var (ga,b)∑n
j=1
(
E|�j|

)2 ≤ 2E(ga,b)

where �i(x) = gia,b(x) – g
i–1
a,b (x) and gia,b(X) = E[ga,b(X)|X1, . . . ,Xi]. Since the function

x log x is monotone whenever it is positive, the previous two inequalities for Var (ga,b) may
be combined to get

P{ f (X) ≥ b}
4

(b – a)2 log
P{ f (X) ≥ b}(b – a)2

4
∑n

j=1
(
E|�j|

)2 ≤ 2E(ga,b). (9.2)
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Next, we derive suitable upper bounds for the quantities
∑n

j=1
(
E|�j|

)2 and E(ga,b). First
observe that

E(ga,b) =
1
4

n∑
i=1

E
[(

ga,b(X) – ga,b
(
X(i)

))2]

=
1
2

n∑
i=1

E
[(

ga,b(X) – ga,b
(
X(i)

))2
+

]

=
1
2
E

[
1{ f (X)>a}

n∑
i=1

(
ga,b(X) – ga,b

(
X(i)

))2
+

]
≤ vP{ f (X) > a}/2.

On the other hand,

E|�j| ≤ E
∣∣∣ga,b(X) – ga,b (X(i)

)∣∣∣
= 2E

[(
ga,b(X) – ga,b

(
X(i)

))
+

]
= 2E

[(
ga,b(X) – ga,b

(
X(i)

))
+
1{ f (X)>a}

]
(by the definition of ga,b)

≤ 2

√
E
[(

ga,b(X) – ga,b
(
X(i)

))2
+

]√
P{ f (X) > a}

(by the Cauchy–Schwarz inequality)

=

√
2E
[(

ga,b(X) – ga,b
(
X(i)

))2]√
P{ f (X) > a}.

Thus,
n∑
j=1

(
E|�j|

)2 ≤ 8P{ f (X) > a}E(ga,b) ≤ 4vP{ f (X) > a}2.

Plugging these estimates into (9.2), we obtain

A log
A

2P{ f (X) > a}
≤ 1

where we introduced A = P{ f (X) ≥ b}(b – a)2/(4vP{ f (X) > a}). The meaning of this
inequality can be seen in the most transparent manner by taking a = Q 1–2–k

def= ak and
b = Q 1–2–(k+1) = ak+1 for some integer k ≥ 1. Then P{ f (X) > a} ≤ 2–k, P{ f (X) ≥ b} ≥
2–(k+1), and the inequality above implies

A log(2k–1A) ≤ 1
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or, equivalently, y log y ≤ 2k–1 where y = 2k–1A. It is easy to see that this implies
y ≤ 2k/k, that is, A ≤ 2/k. Since A ≥ (ak+1 – ak)2/(8v), we have derived the following
theorem.

Theorem 9.8 Let f : {–1, 1}n → R satisfy
∑n

i=1( f (x) – f (x
(i)))2+ ≤ v and let ak = Q 1–2–k .

Then for all integers k ≥ 1,

ak+1 – ak ≤ 4
√
v
k
.

This is an essential improvement over the bound 4
√
v obtained in Section 3.6 using

the Efron–Stein inequality. Note that if f (X) was a normal random variable with variance v,
then one would have ak ∼

√
2vk log 2 and ak+1 – ak ∼

√
v log 2/k. The bound of the the-

orem has the same form, apart from a constant factor. This shows that functions satisfying
the conditions of Theorem 9.8 not only have sub-Gaussian tail probabilities (as implied
by Theorem 6.7) but the differences between quantiles of the distribution of f are domin-
ated by corresponding differences of a normally distributed random variable. In this sense,
Theorem 9.8 may be considered as a “local” concentration inequality.

Recall from earlier chapters that examples of functions satisfying the conditions of
Theorem 9.8 include suprema of Rademacher averages, Talagrand’s convex distance, the
largest eigenvalue of a symmetric randommatrix, etc. An important restriction in Theorem
9.8 is that it only holds for functions defined on the binary hypercube (as opposed to more
general concentration inequalities as, for example Theorem 6.7).

With similar arguments one may also derive local concentration inequalities for self-
bounding functions. We leave the details to the reader (see Exercise 9.5).

9.4 Discrete Fourier Analysis and a Variance Inequality

In the previous sections we saw how Theorem 9.4, an improvement of the Efron–Stein
inequality, implies various interesting results about influences of a binary-valued function
defined on the binary n-cube. In this section we present a closely related inequality for the
variance of a real-valued function defined on the binary n-cube.

The proof of this inequality is based on Fourier analysis on the hypercube {–1, 1}n, a
technique that has proved powerful in a variety of problems. Discrete Fourier analysis is
an elegant and intuitive tool in the study of functions of several binary variables. In this
context the Bonami–Beckner hypercontractive inequality (Theorem 5.18) turns out to be
a powerful tool.

We start by recalling some basic notions of Fourier analysis on the discrete n-cube
{–1, 1}n, introduced in Section 5.8.

We treat the set F of real-valued functions f : {–1, 1}n → R as a 2n-dimensional
Euclidean space with inner product

〈f , g〉 = E[ fg] = E[f (X)g(X)] = 2–n
∑

x∈{–1,1}n
f (x)g(x), f , g ∈ F
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and corresponding norm ‖ f‖2 =
√〈f , f 〉. To any of the 2n subsets S ⊂ {1, . . . , n}, we

assign the function

uS(x) =
∏
i∈S

xi.

(If S = ∅, we define uS ≡ 1.) It can be seen immediately that the uS form an orthonormal
basis of F and therefore every f ∈ F may be expressed, in a unique way, as the Fourier–
Walsh expansion

f (x) =
∑

S⊂{1,...,n}

f̂ (S)uS(x)

where, for all S ⊂ {1, . . . , n}, f̂ (S) = 〈f , uS〉. The f̂ (S) are called the Fourier coefficients of f .
Using these definitions, we obtain Parseval’s identity:

‖ f‖22 =
〈
f ,

∑
S⊂{1,...,n}

f̂ (S)uS

〉
=

∑
S⊂{1,...,n}

f̂ (S)
〈
f , uS

〉
=

∑
S⊂{1,...,n}

f̂ (S)2.

Since f̂ (∅) = E[ f ],

Var ( f ) = ‖ f‖22 – (E[ f ])2 =
∑
S�=∅

f̂ (S)2.

In order to make the connection to influences, introduce the function

gi(x) =
f (x) – f (x(i))

2
, i = 1, . . . , n

and denote the Fourier coefficients of gi by ĝi(S), S ⊂ {1, . . . , n}. The key observation is
that for every i = 1, . . . , n and S ⊂ {1, . . . , n},

ĝi(S) = 〈gi, uS〉 = 1
2
E

⎡⎣( f (X) – f (X(i)
))∏

j∈S
Xj

⎤⎦ =
{
0 if i /∈ S
f̂ (S) if i ∈ S. (9.3)

If f : {–1, 1}n → {0, 1} is binary-valued, then Ii( f ) = E[ g2i ]/4, and we may apply
Parseval’s identity to obtain

Ii( f ) = 4‖gi‖22 = 4
∑

S⊂{1,...,n}

ĝi(S)2 = 4
∑
S:i∈S

f̂ (S)2
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and therefore the total influence may be written as

I( f ) = 4
∑

S⊂{1,...,n}

|S| f̂ (S)2.

Equation (9.3) also implies that

Var ( f ) =
∑
S�=∅

f̂ (S)2 =
∑
S�=∅

n∑
i=1

ĝi(S)2

|S|
.

Note that the last two identities immediately imply Var ( f ) ≤ I( f )/4, a special case of the
Efron–Stein inequality.

The main result of this section is the following inequality for the variance.

Theorem 9.9 Let f : {–1, 1}n → R be a real-valued function. Then

Var ( f ) ≤ C
n∑
i=1

E
[(

f (X) – f
(
X(i)

))2]

1 + log

√
E
[(

f (X) – f
(
X(i)

))2]
E
∣∣∣ f (X) – f(X(i)

)∣∣∣
where C ≤ 3(6 · e1/3 + 1)(log 2)/8 ≈ 3.297589 is a universal constant.

The proof of Theorem 9.9 requires onemore tool, namely the Bonami–Beckner inequal-
ity (Corollary 5.16) which we now recall. For every f ∈ F and for any q ≥ 2 and
k = 1, . . . , n, ∥∥∥∥∥∥

∑
S:|S|=k

f̂ (S)uS

∥∥∥∥∥∥
q

≤ (q – 1)k/2

∥∥∥∥∥∥
∑
S:|S|=k

f̂ (S)uS

∥∥∥∥∥∥
2

,

where ‖ f‖p is defined as (E[ f p])1/p for any p > 0.

Proof of Theorem 9.9. Recalling the formula for the variance

Var ( f ) =
∑
S�=∅

n∑
i=1

ĝi(S)2

|S|
,

we see that in order to prove the theorem, it suffices to show that for any f :
{–1, 1}n → R,

∑
S�=∅

f̂ (S)2

|S|
≤ 4C

‖ f‖22
1 + log ‖ f‖2

‖ f‖1
,
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which is what we do in the remaining part of the proof. Fix k ≤ n and observe that

∑
S:|S|=k

f̂ (S)2 =

〈∑
S:|S|=k

f̂ (S)uS, f

〉

≤
∥∥∥∥∥∥
∑
S:|S|=k

f̂ (S)uS

∥∥∥∥∥∥
3

· ‖ f‖3/2 (by Hölder’s inequality)

≤ 2k/2

⎛⎝∑
S:|S|=k

f̂ (S)2

⎞⎠1/2

· ‖ f‖3/2

(by the Bonami–Beckner inequality, used with q = 3).

This implies that, for all k = 1, . . . , n,∑
S:|S|=k

f̂ (S)2 ≤ 2k‖ f‖23/2

and we have, for all positive integersm,

∑
S:1≤|S|≤m

f̂ (S)2

|S|
≤ ‖ f‖23/2

m∑
k=1

2k

k
≤ 3

2m

m
‖ f‖23/2.

At the last step we used the fact that for k ≥ 3, 2k+1/(k + 1) ≥ (3/2)2k/k. Now we
may write

∑
S�=∅

f̂ (S)2

|S|
=

∑
S:1≤|S|≤m

f̂ (S)2

|S|
+
∑

S:|S|>m

f̂ (S)2

|S|

≤ 3
2m

m
‖ f‖23/2 +

1
m + 1

∑
S:|S|>m

f̂ (S)2

≤ 1
m + 1

(
6 · 2m‖ f‖23/2 + ‖ f‖22

)
.

Now we choosem as the largest integer such that 2m‖ f‖23/2 ≤ e2/3‖ f‖22 so that

m + 1 ≥ 2
log 2

log
(
e1/3‖ f‖2/‖ f‖3/2

)
and

∑
S�=∅

f̂ (S)2

|S|
≤ (6 · e2/3) + 1)

m + 1
‖ f‖22 ≤ 4C · ‖ f‖22

log (e1/3‖ f‖2/‖ f‖3/2) ,
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where C = (6 · e2/3) + 1)(log 2)/8. The proof is concluded by observing that, by the
Cauchy–Schwarz inequality,

E
[
| f |3/2

] ≤ ‖ f‖1/21 · ‖ f‖2
and therefore

‖ f‖2
‖ f‖1 ≤

( ‖ f‖2
‖ f‖3/2

)3

. �

Remark 9.4 The constantC in Theorem 9.9 is not optimal and can easily be improved by a
more careful analysis. In Exercise 9.3 we sketch a different proof yielding the improved
constant C = 9/10. By considering f (x) =

∑n
i=1 xi, we see that the best possible value

of C is at least 1/4.

9.5 Monotone Sets

Monotone subsets of the binary n-cube have a central importance in the study of influences
for various reasons. First, their special formmakes them crucial in understanding influences
of general sets. Second, monotone sets appear naturally in the study of threshold phenom-
ena and social choice theory, some of the most important applications of the theory of
influences (see Section 9.6 below).

Recall that a function f : {–1, 1}n → {0, 1} is termed monotone if it is non-
decreasing in all of its components, that is, f (x1, . . . , xi–1, –1, xi+1, . . . , xn) ≤
f (x1, . . . , xi–1, 1, xi+1, . . . , xn) for all x = (x1, . . . , xn) ∈ {–1, 1}n and i ∈ {1, . . . , n}.

To present the ideas in the simplest possible setting, we still assume the uniform dis-
tribution over {–1, 1}n, that is, in this section X = (X1, . . . ,Xn) is a vector of independent
symmetric sign variables. However, most results extend, in a straightforward way, to the
case when the components of X are i.i.d. with P{Xi = 1} = 1 – P{Xi = –1} = p and with p
possibly different from 1/2 (see the exercises).

We begin by proving that monotone functions minimize the total influence.

Theorem 9.10 For any function f : {–1, 1}n → {0, 1} there exists a monotone function
g : {–1, 1}n → {0, 1} such that E[ g] = E[ f ] and I(g) ≤ I( f ).

Proof The proof is based on a simple “shifting” technique. By a sequence of transform-
ations we replace A = {x : f (x) = 1} by a monotone set of the same size as A with
total influence not exceeding that of A. If A is not monotone, then there exists a
variable i ∈ {1, . . . , n} such that for some x, (x1, . . . , xi–1, –1, xi+1, . . . , xn) ∈ A and
(x1, . . . , xi–1, 1, xi+1, . . . , xn) /∈ A. Fix such a variable i and define the set A(i) by
switching all such pairs of points (see Fig. 9.1), that is,

x ∈ A(i) if and only if

⎧⎨⎩
either x ∈ A and xi = 1
or x ∈ A and x(i) ∈ A
or x /∈ A and x(i) ∈ A and xi = 1.
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(1 , 1 , 1)

(1 , 1 , −1)

(1 , −1 , −1)(−1 −1, , −1)

Figure 9.1 Shifting the non-monotone set A along the second variable to obtain A(2) . In the next step A(2)

is shifted along the first variable to obtain amonotone set of same size and decreased total influence

Clearly, P(A(i)) = P(A) and it is easy to see that I(A(i)) ≤ I(A). If A(i) is not mono-
tone, this transformation can be repeated (with a variable different from i). If, to each
set A, we assign the “progress measure” φ(A) =

∑
x∈A ‖x‖ then we see that at each

transformation step, the value of φ strictly increases by at least 1 and therefore the
transformation process terminates after a finite number of steps. (Recall the nota-
tion ‖x‖ =

∑n
i=1 1{xi=1} for all x = (x1, . . . , xn) ∈ {–1, 1}n.) The obtained set must

be monotone, has the same cardinality as A, and has a total influence not larger
than I(A). �

The next result shows that among all monotone functions, simple majority maximizes
the total influence. Equivalently, Hamming balls centered at the vector (1, 1, . . . , 1) have
a maximal edge boundary among all monotone sets. This is interesting in view of Harper’s
theorem (Theorem 7.6) which states that Hamming balls minimize the vertex boundary.
Recall from Section 4.4 that without the restriction of monotonicity, the sub-cubes of
{–1, 1}n minimize the edge-boundary (i.e. total influence).

Theorem 9.11 Let B = {x : ‖x‖ > n/2} be the Hamming ball of radius n/2 centered at the
all-1 vector. Then for any monotone set A ⊂ {–1, 1}n, I(A) ≤ I(B). If A is a monotone
set with cardinality |A| =

∑k
i=0
(n
i

)
for some k ∈ {0, 1, . . . , n} then I(A) ≤ I(Bk) where

Bk = {x : ‖x‖ > n – k – 1}.

Proof For binary vectors x, y ∈ {–1, 1}n, we write x ≺ y if xi ≤ yi for all i = 1, . . . , n and
‖y‖ = ‖x‖ + 1. Using the monotonicity of A, we may write

I(A) = E
n∑
i=1

1{Xi is pivotal}

= 2–n
∑

x∈{–1,1}n

∑
y:x≺y

(
1{y∈A} – 1{x∈A}

)
.



THR E SHOLD PHENOMENA | 279

Observe that ∑
x∈{–1,1}n

∑
y:x≺y

1{y∈A} =
∑
y∈A

‖y‖,

since every y ∈ A is counted ‖y‖ times in the double sum on the left-hand side. On the
other hand, ∑

y:x≺y

1{x∈A} = (n – ‖x‖)1{x∈A},

and therefore

I(A) = 2–n
∑
x∈A

(2‖x‖ – n).

This expression is clearly maximized if A = {x : ‖x‖ > n/2}. The second statement
follows similarly. �

Note that if n is even, the “closed” Hamming ball {x : ‖x‖ ≥ n/2} has the same total
influence as B = {x : ‖x‖ > n/2} and therefore both sets have maximal influence among
all monotone sets. For odd n, the set B is the unique maximizer. Now it follows immedi-
ately that for symmetric monotone functions all individual influences must go to zero at a
rate ofO(n–1/2). In particular, for monotone symmetric functions, all individual influences
converge to zero. More precisely, we have the following.

Corollary 9.12 If A is a monotone set such that all individual influences Ii(A) are equal then

Ii(A) ≤ Ii(B) =
(

n – 1
#(n – 1)/2$

)
2–(n–1) ∼

√
2
nπ

.

For monotone sets one also has
n∑
i=1

Ii(A)2 ≤ 4P(A)(1 – P(A)).

To see this, observe that monotonicity of A implies that for f (x) = 1{x∈A}, the influ-
ence of the i-th variable equals twice the Fourier coefficient corresponding to the
singleton {i}, that is, Ii( f ) = 2f̂ ({i}) (see Section 9.4 for the definitions). Since
Var ( f ) =

∑
S�=∅ f̂ (S)2, we immediately have

∑n
i=1 Ii(A)

2 ≤ 4Var ( f ) = 4P(A)(1 – P((A)).
Equality is achieved, for example, if A is a dictatorship of the form A = {x : xi = 1}. On

the other hand, for the simple majority function
∑n

i=1 Ii(A)
2 ∼ (2/π)2 is also bounded

away from zero.

9.6 Threshold Phenomena

One of the most beautiful applications of the theory of influences is in the study of phase
transitions and threshold phenomena. In this section we give a brief overview of some of
the basic results in this fascinating area.



280 | I N F LU ENCE S AND THR E SHOLD PHENOMENA

Consider a monotone binary-valued function defined on the binary cube:
f : {–1, 1}n → {0, 1}. In contrast to earlier sections in this chapter, now {–1, 1}n is
equipped with the product of Bernoulli(p)measures. In other words, the distribution of the
random binary vector X = (X1, . . . ,Xn) is such that the components Xi are independent
with distribution P{Xi = 1} = 1 – P{Xi = –1} = p for all i = 1, . . . , n, where p ∈ [0, 1]. We
denote the measure induced by X on {–1, 1}n by Pp so that the notation makes explicit the
dependence on the parameter p. We denote A = {x : f (x) = 1}. Since f is monotone, A is a
monotone set. The main object of our study is the evolution of

Pp(A)
def= P{X ∈ A} =

∑
x∈A

p‖x‖(1 – p)n–‖x‖

as p varies in [0, 1]. (Recall that ‖x‖ =
∑n

i=1 1{xi=1}.) If A �= ∅ and A �= {–1, 1}n, then
monotonicity of A implies that P0(A) = 0, P1(A) = 1, and Pp(A) is a strictly increasing dif-
ferentiable function of p in [0, 1]. The unique value p1/2 for which Pp1/2(A) = 1/2 is called
the critical value of the parameter p.

The main message of this section is that if the function f does not depend too much on
any of its variables then there is a sharp transition around p1/2. In a narrow interval the value
of Pp(A) increases from near-zero values to near one.

To fix ideas, let ε ∈ (0, 1) and define pε such that Ppε
(A) = ε. If ε < 1/2 is small, the

difference p1–ε – pε indicates how quickly the probability of A grows close to the critical
probability. If this difference is small, then a ‘‘phase transition” occurs around the critical
value p1/2 (see Fig. 9.2).

To gain some insight, consider first the simple examples of a dictatorship and simple
majority.

ε

1 − ε

pε
p1 − ε

1

p

Pp (A )

0 1

Figure 9.2 p1–ε – pε is the “threshold width”, the length of the interval in which the probability of a

monotone setA grows from ε to 1 – ε
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Example 9.13 (DICTATORSHIP) Suppose that f (x) = (x1 + 1)/2 is a monotone dictat-
orship function, that is, f is determined by just one of the n variables. Then clearly
Pp(A) = p and p1–ε – pε = 1 – 2ε. This means that for the transition from small values
of Pp(A) to large ones, one needs to drastically change the value of p. In other words,
no phase transition occurs in this example.Wewill see soon that this property is shared
by any function with a small total influence.

Example 9.14 (SIMPLE MAJORITY: CONDORCET’S JURY THEOREM) One observes a
qualitatively different behavior by considering the example of a simple majority func-
tion defined by A = {x :

∑n
i=1 xi > 0}. For simplicity, assume that the number n of

variables is odd. Then p1/2 = 1/2. To estimate the length of the threshold interval
(pε , 1 – pε), note that by Hoeffding’s inequality, if p < 1/2,

Pp(A) = Pp

(
n∑
i=1

xi > 0

)

= Pp

( n∑
i=1

xi – (2p – 1)n > (1 – 2p)n

)
≤ e–2n(1–2p)

2
,

and therefore Pp(A) ≤ ε whenever p ≤ 1/2 –
√
log(1/ε)/8n. By a symmetric argument

Pp(A) ≥ 1 – ε for all p ≥ 1/2 +
√
log(1/ε)/8n, so the value of Pp(A) jumps from ε to

1 – ε in an interval of length not more than
√
log(1/ε)/2n. In other words, if the num-

ber of variables is large, one witnesses a sharp threshold around the critical parameter value
p = 1/2. What we have just derived is a quantitative version of a classical result of social
choice theory, known as Condorcet’s jury theorem.

As shown in the sequel, the threshold phenomenon exhibited by the last example extends
to awide class ofmonotone functions. Apart frommonotonicity, the only required property
for such phase transitions is that the function should not depend toomuch on each variable.
In other words, if all individual influences are small, there is a quick transition from very
small to very large probabilities. The key tool for making the connection to the world of
influences is a simple result known as Russo’s lemma. Russo’s lemma, stated and proved
below, asserts that the derivative of the measure ofA, with respect to the parameter p, is just
the total influence. Recall the definition of the influence of the i-th variable:

Ipi (A) = Ipi ( f ) = Pp
({

x : f (x) �= f
(
x(i)
)})

.

The total influence is just Ip(A) =
∑n

i=1 I
p
i (A). Note that we make the dependence on p

explicit in the notation.

Theorem 9.15 (RUSSO’S LEMMA) Let A be a monotone subset of {–1, 1}n. Then for any
p ∈ (0, 1),

dPp(A)
dp

= Ip(A).
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Proof Let p = (p1, . . . , pn) be a vector of n components pi ∈ (0, 1) and define the prob-
ability measure Q p on {–1, 1}n as the product of n independent Bernoulli measures
with parameters pi. Thus,Pp = Q p with p = (p, p, . . . , p). LetU1, . . . ,Un be independ-
ent uniformly distributed random variables in [0, 1]. If we defineXi = 21{Ui≤p} – 1 for
i = 1, . . . , n, then the joint distribution of X = (X1, . . . ,Xn) is just Pp. Let p′ ∈ (0, 1)
and for some fixed i, define X′

i = 1{Ui≤p′}. Let X̂i = (X1, . . . ,Xi–1,X′
i ,Xi+1, . . . ,Xn) be

obtained by replacing the i-th component of X by X′
i and keeping all other variables

fixed. If we denote by p′i = (p, . . . , p, p′, p, . . . , p) the vector whose i-th component
equals p′ while all others are p, then the distribution of X̂i is justQ p′i .

Assume first that p′ ≥ p. Then by the monotone property of A,

Q p′i (A) – Q p(A) = P{X̂i ∈ A,X /∈ A}

= P{Ui ∈ (p, p′] and Xi is pivotal for A}

= (p′ – p)P{Xi is pivotal for A}

= (p′ – p)Ipi (A).

A similar argument shows that if p′ < p, one also has Q p′i(A) – Q p(A) = (p′ –
p)Ipi (A). By dividing both sides by p′ – p and letting p′ → p, we get

∂Q p(A)
∂pi

= Ipi (A).

Russo’s lemma now follows from a simple application of the chain rule:

dPp(A)
dp

=
n∑
i=1

∂Q p(A)
∂pi

= Ip(A). �

As an immediate consequence, we obtain the following generalization of Theorem 9.11.

Corollary 9.16 Let A be a monotone subset of {–1, 1}n. Then

Ip(A) =
1

p(1 – p)
E
[
(‖X‖ – np)1{X∈A}

]
.

In particular,

Ip(A) ≤
√

nPp(A)
p(1 – p)

.

Proof By Russo’s lemma,

Ip(A) =
dPp(A)
dp

=
d
dp

∑
x∈{–1,1}n

p‖x‖(1 – p)n–‖x‖1{x∈A}
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=
∑

x∈{–1,1}n

(‖x‖
p

–
n – ‖x‖
1 – p

)
p‖x‖(1 – p)n–‖x‖1{x∈A}

=
1

p(1 – p)

∑
x∈{–1,1}n

(‖x‖ – np)p‖x‖(1 – p)n–‖x‖1{x∈A}

=
1

p(1 – p)
E
[
(‖X‖ – np)1{X∈A}

]
.

The second statement follows from the Cauchy–Schwarz inequality by noting that the
distribution of ‖X‖ is binomial with parameters n and p. �

Russo’s lemma provides a convenient tool for studying the speed of growth of Pp(A). It
shows that Pp(A) grows rapidly whenever the total influence is large. Thus, the inequalities
for influences established in Section 9.2 carry important information about the length of the
“threshold” interval in which Pp(A) changes from, say, a small value ε to 1 – ε. In order to
make these inequalities useful, they need to be extended to the case when X is distributed
according to Pp. However, this is immediate if one replaces the logarithmic Sobolev
inequality used in the proof of Theorem 9.4 by an appropriate version for the measure Pp.
For example, the generalization of Theorem 9.5 to non-symmetric distributions implies
that if the set A is symmetric in the sense that all individual influences are equal, then
the total influence (and hence the derivative of Pp(A)) is at least of the order of log n
whenever Pp(A) is neither too small nor too large (see Exercise 9.8 for the details). We
also derive this result as a corollary of a more general principle (see Theorem 9.17 and
Corollary 9.18).

On the other hand, Theorem 9.7 may also be easily generalized to the measure Pp.
This theorem implies that if A is such that the total influence is small, then A is close to
being determined by a small number of variables. Translated to the language of threshold
phenomena, this means that if A has a coarse threshold (i.e. if Pp(A) takes a long time
to grow from small values to large), A must be almost a junta, provided that the critical
probability is neither too close to 0 nor to 1 (see Exercise 9.9 for details).

In order to derive the main result of this section, we need to generalize Theorem 9.4 to
the case when X = (X1, . . . ,Xn) is distributed according to Pp for values of p different from
1/2. This is immediate if we apply an appropriate logarithmic Sobolev inequality for the
measure Pp, generalizing Theorem 5.1. Such an inequality is, of course, available. Simply
recall that Theorem 5.2 states that for any real-valued function f : {–1, 1}n → R,

Ent( f 2) ≤ c(p)E( f )

where, denoting by Ep expectation with respect to the measure Pp, Ent( f 2) =
Ep[ f 2 log( f 2)] – Ep[ f 2] log Ep[ f 2],

E( f ) = p(1 – p)Ep

[
n∑
i=1

(
f (x) – f (x(i))

)2]
,
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and

c(p) =
1

1 – 2p
log

1 – p
p

.

With the help of this inequality, the proof of Theorem 9.4 may be repeated to obtain that
for any f : {–1, 1}n → R,

Var ( f ) log
Var ( f )∑n

j=1
(
Ep|�j|

)2 ≤ c(p)E( f ).

Specializing to binary-valued functions f : {–1, 1}n → {0, 1}, and using the facts that
E( f ) = p(1 – p)Ip( f ) and

Ep|�i| ≤ 2p(1 – p)Ipi ( f ),

we obtain

c(p)p(1 – p)Ip( f ) ≥ Var ( f ) log
Var ( f )

(2p(1 – p))2
∑n

i=1
(
Ipi ( f )

)2
≥ Var ( f ) log

Var ( f )
(2p(1 – p))2Ip( f )δp

where δp = maxi=1,...,n I
p
i ( f ) denotes the maximal influence. Introducing the notation

A =
Var ( f )

(2p(1 – p))2Ip( f )δp
and B =

c(p)
4p(1 – p)δp

,

the above inequality may be written as A logA ≤ B, which implies A ≤ 2B/ logB, that is,

Ip( f ) ≥
Var ( f ) log c(p)

4p(1–p)δp

2c(p)/(p(1 – p))
.

In combination with Russo’s lemma, we have obtained the following.

Theorem 9.17 For any monotone set A ⊂ {–1, 1}n, we have

dPp(A)
dp

≥ Pp(A)(1 – Pp(A))
c(p)/(p(1 – p))

log
c(p)

4p(1 – p)δp

where δp = maxi=1,...,n I
p
i (A) and c(p) = 1

1–2p log
1–p
p .

The theorem shows that if each variable has a small influence (i.e. if δp is small) then the
derivative of Pp(A) is large whenever Pp(A)(1 – Pp(A)) is large, that is, when Pp(A) is close
to 1/2. This means that Pp(A) grows rapidly in the vicinity of the critical parameter p1/2,
resulting in a quick transition from very small to very large values of the probability Pp(A)

of the monotone set A. We know from Corollary 9.16 that Ip(A) ≤
√

nPp(A)
p(1–p) and therefore,



THR E SHOLD PHENOMENA | 285

ifA is symmetric in the sense that all variables have the same influence, then δp ≤
√

Pp(A)
np(1–p) .

We may use this estimate to derive the following quantitative result bounding the length of
the “threshold” interval in which the Pp(A) grows from ε to 1 – ε.

Corollary 9.18 Let A ⊂ {–1, 1}n be a monotone set such that for all p ∈ (0, 1), all variables
have the same influence, that is, Ip1(A) = · · · = Ipn(A). Then for any ε ∈ (0, 1/2),

p1–ε – pε ≤ 8 log 1
2ε

log n
16

.

The proof below handles some constants relatively generously, and it is not difficult to
improve the constants in the corollary (see, e.g., Exercise 9.8 where a direct simple proof of
Corollary 9.18 is suggested). The main message of this result is that regardless of what the
monotone set is, if all variables have equal influence, then there is a sharp phase transition
within an interval of lengthO(1/ log n) around the critical value of p. This may be regarded
as a powerful generalization of Condorcet’s jury theorem. Of course, this statement is most
interesting if the critical value p1/2 is not too close to either 0 or 1. Indeed, it is common to
define the monotone set A as having a sharp threshold if for all ε ∈ (0, 1),

p1–ε – pε

min(p1/2, 1 – p1/2)
= o(1).

Corollary 9.18 states that A experiences a sharp threshold whenever min(p1/2,
1 – p1/2) log n → ∞. Determining the location of the critical value is often a very challen-
ging problemwhose solution requires problem-specific tools. The study of such techniques
goes beyond the scope of this book.

Proof As mentioned above, the symmetry assumption and Corollary 9.16 imply

δp ≤
√

Pp(A)
np(1–p) ≤

√
1

np(1–p) . Plugging this estimate into the lower bound of Theorem
9.17, we have

dPp(A)
dp

≥ Pp(A)(1 – Pp(A))
2c(p)/(p(1 – p))

log
c(p)

4p(1 – p)
√

1
np(1–p)

=
Pp(A)(1 – Pp(A))
2c(p)/(p(1 – p))

log

(√
n
16

·
log 1–p

p√
p(1 – p)(1 – 2p)

)
(
using c(p) = 1

1–2p log
1–p
p

)
=

Pp(A)(1 – Pp(A))
4c(p)/(p(1 – p))

log
n
16

+
Pp(A)(1 – Pp(A))

2
· 1 – 2p
p(1 – p) log 1–p

p

log
log 1–p

p√
p(1 – p)(1 – 2p)

≥ Pp(A)(1 – Pp(A))
2

log
n
16
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where at the last step we use the fact that c(p)/(p(1 – p)) ≤ 1/2 and that, since
p(1 – p) ≤ 1,

1 – 2p
p(1 – p) log 1–p

p

log
log 1–p

p√
p(1 – p)(1 – 2p)

≥ 1 – 2p
log 1–p

p

log
log 1–p

p

1 – 2p
≥ 0

simply because x log(1/x) ≥ 0 for all x ∈ [0, 1] and (1 – 2p)/ log((1 – p)/p) ∈
[0, 1/2].

Therefore, for any p ≤ p1/2, since 1 – Pp(A) ≥ 1/2, we have

dPp(A)
dp

≥ Pp(A)
4

log
n
16

or, equivalently,

d(log Pp(A))
dp

≥ 1
4
log

n
16

.

Using this estimate in the interval [pε , p1/2], we obtain

log
1
2
– log ε ≤ (p1/2 – pε)

1
4
log

n
16

,

that is, p1/2 – pε ≥ 4 log(1/(2ε))/ log(n/16). Since the same upper bound holds for
p1–ε – p1/2, the proof is complete. �

9.7 Bibliographical Remarks

The study of influences was initiated by Ben-Or and Linial (1990) andwasmade popular by
the influential paper of Kahn, Kalai, and Linial (1988). Since then it has become a rich area
of research of which we merely offer some highlights. For an excellent survey of influences,
threshold phenomena, and many related topics, we refer to Kalai and Safra (2006).

Our treatment of the Kahn–Kalai–Linial theorem (Theorem 9.5) is based on the eleg-
ant proofs of Falik and Samorodnitsky (2007) and Rossignol (2006). In particular, Lemma
9.3 and Theorem 9.4 appear in Falik and Samorodnitsky (2007). Rossignol (2006) uses
essentially the same arguments. Theorem 9.5 was first proved by Kahn, Kalai, and Linial
(1988). The ‘‘tribes” example (Example 9.6) was constructed by Ben-Or and Linial (1990).
Theorem 9.7 is due to Friedgut (1998).

Theorem 9.9 was first proved by Talagrand (1994a). The original proofs of Theorems
9.5 and 9.7 both use the Fourier analysis techniques shown in Section 9.4.

Several attempts have been made to obtain analogs of Theorems 9.4 and 9.9 beyond
the binary hypercube with a product measure. Indeed, O’Donnell and Wimmer (2009),
Keller, Mossel, and Sen (2012a, 2012b), and Cordero-Erausquin and Ledoux (2011)
obtain extensions in various directions.
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Benjamini, Kalai, and Schramm (2003) apply Talagrand’s inequality (Theorem 9.9)
to prove a sub-linear bound for the variance of first passage percolation, improving the
argument of Example 3.13. Benaïm and Rossignol (2006) use Theorem 9.4 to derive
exponential concentration inequalities for first passage percolation.

The material of Section 9.3 comes from Devroye and Lugosi (2008). They extend
Theorem 9.8 to real-valued functions defined on the r-ary cube {0, 1, . . . , r – 1}n for
integers r > 2.

The proof of Theorem 9.11 appears in Friedgut and Kalai (1996).
For threshold phenomena, which have been studied extensively in the context of random

graphs, see Erdős and Rényi (1960), Bollobás (2001), and Janson, Łuczak, and Ruciński
(2000). The first general results concerning threshold phenomena are due to Margulis
(1974), Russo (1982), and Bollobás and Thomason (1987). Russo’s lemma appears in
Margulis (1974) and Russo (1982), but see also Grimmett (1989). Corollary 9.18 is from
Talagrand (1994a). The best known constants were proved by Rossignol (2006).

The results presented here only give satisfactory conditions for the existence of sharp
thresholds if the critical value is bounded away from zero and one. Also, we only treat
product distributions on the binary hypercube while more general product, and even some
non-product, spaces are of great interest. Indeed, generalizations in these directions have
been the focus of intensive research. A small sample of the literature that the interested
reader may consult includes Bollobás and Riordan (2006b, 2006a), Bourgain and Kalai
(1997), Bourgain et al. (1992), Friedgut (1999, 2005), Hatami (2012), Kalai (2004),
Mossel, O’Donnell and Oleszkiewicz (2010), Talagrand (1993, 1997, 1999), and van den
Berg (2008).
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9.8 E X ERC I S E S

9.1. Let f : {–1, 1}n → {0, 1} be binary-valued and let g : {–1, 1}n → R be a real-valued
function.WriteA={x : f (x) = 1} and define the set B={x : g(x) ≥ 1/2}. Show that

P(A&B) ≤ 4E
[
( f – g)2

]
where A&B = {x : f (x) �= 1{g(x)≥1/2} denotes the symmetric difference of A and B.

9.2. Give a proof of Theorem 9.5 based on Theorem 9.9 (with possibly different con-
stants).

9.3. Show that Theorem 9.9 holds with C = 9/10.Hint: show that for any f ,∑
S�=∅

f̂ (S)2

3|S|
≤

∑
S⊂{1,...,n}

f̂ (S)2

2|S| + 1
=
∫ 1

0

∑
S⊂{1,...,n}

f̂ (S)2γ 2|S|dγ

and use the Bonami–Beckner inequality (Corollary 5.17) to show

Var ( f ) ≤ 3
n∑
i=1

∫ 1

0

∑
S⊂{1,...,n}

ĝi(S)2γ 2|S|dγ ≤ 3
n∑
i=1

∫ 1

0
‖gi‖21+γ 2dγ .
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Use Hölder’s inequality and some calculus to bound∫ 1

0
‖gi‖21+γ 2dγ ≤ ‖gi‖22

∫ 1

0

(‖gi‖1
‖gi‖2

)2(1–γ 2)/(1+γ 2)

dγ ≤ 6
5

‖gi‖22
1 + log ‖gi‖1

‖gi‖2
.

(This simple proof of Talagrand’s inequality was suggested by Benjamini, Kalai, and
Schramm (2003).)

9.4. Prove the following version of Theorem 9.8. Assume f : {–1, 1}n → R satisfies∑n
i=1( f (x) – f (x

(i)))2– ≤ v for some v > 0 and let B = maxx,i | f (x) – f (x(i))|. Show
that there is a constant K such that for all δ < γ ≤ 1/2, by taking a = Q 1–γ + B and
b = Q 1–δ ,

Q 1–δ – Q 1–γ ≤ B + K
√

vγ
δ log e2

2γ

.

9.5. Let f : {–1, 1}n → R be such that

| f (x) – f (x(i))| ≤ B for all x and i and
n∑
i=1

(
f (x) – f

(
x(i)
))2

+
≤ φ( f (x))

where φ is a nonnegative nondecreasing function. Show that there exists a constant
K such that for all δ < γ ≤ 1/2,

Q 1–δ – Q 1–γ ≤ K

√√√√φ(Q 1–δ + B)γ
δ log e2

2γ

.

In particular, recalling the notation ak = Q 1–2–k ,

ak+1 – ak ≤ K

√
φ(ak+1 + B)

k

(see Devroye and Lugosi (2008)).
9.6. Let A ⊂ {–1, 1}n be a monotone set with critical parameter p1/2. Prove that for every

0 < ε < 1/2 there exists a constant c such that p1–ε – pε ≤ cmin(p1/2, 1 – p1/2) see
Bollobás and Thomason (1987).

9.7. Let k ∈ {1, . . . , n} and let B = {x : ‖x‖ ≥ k} be a Hamming ball in {–1, 1}n and let
A ⊂ {–1, 1}n be any monotone set whose critical parameter p1/2 is at least that of B.
Show that for any p ≥ p1/2, Pp(A) ≤ Pp(B).

9.8. Generalize Theorem 9.5 to the case when the distribution over {–1, 1} is Pp, the
product of n independent Bernoulli(p) measures. More precisely, show that for any
set A ⊂ {–1, 1}n,

n∑
i=1

Ipi (A)
2 ≥ (2 – ε)2(Pp(A)(1 – Pp(A)))2 log2 n

n
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and

max
i=1,...,n

Ipi (A) ≥
(2 – ε)Pp(A)(1 – Pp(A)) log n

n

where ε = log(Pp(A)(1 – Pp(A))p(1 – p) log2 n)/(c(p) log n). Use the second
inequality, together with Russo’s lemma, to prove Corollary 9.18.

9.9. Prove the following generalization of Theorem 9.7 to the distribution Pp: let
ε ∈ (0, 1). There exists a subset ofm = #I( f )/ε$ variables and a real-valued function
g : {–1, 1}n → R depending on thesem variables only such that

E
[
( f – g)2

] ≤ 2I( f )c(p)
p(1 – p) log(1/4ε) + log(c(p)/(p(1 – p)))

where c(p) = (1/(1 – 2p)) log((1 – p)/p). Conclude, using Russo’s lemma, that
if A ⊂ {–1, 1}n is a monotone set such that there exist absolute constants
K1,K2 ∈ (0, 1) such that p3/4 – p1/4 ≥ K1 and min(p1/2, 1 – p1/2) ≥ K2 then Amay
be approximated by a junta (i.e. by a function depending on a bounded number of
variables).

9.10. Let A ⊂ {–1, 1}n be a monotone set such that p1/2 = 1/2. Show that there exists a
universal constant c > 0 such that p3/4 – p1/4 ≥ c/

√
n.

9.11. Prove the following generalization of Russo’s lemma. Let f : {–1, 1}n → R be a real-
valued function and let X = (X1, . . . ,Xn) be a vector of independent, identically
distributed components with P{Xi = 1} = 1 – P{Xi = –1} = p. Then

dEf (X)
dp

=
n∑
i=1

E ( f (X1, . . . ,Xi–1, 1,Xi+1, . . . ,Xn) – f (X1, . . . ,Xi–1, –1,Xi+1, . . . ,Xn)).

(Rossignol, 2006.)
9.12. (CONCENTRATION AND INFLUENCE) Let A ⊂ {–1, 1}n and let X be uniformly

distributed on {–1, 1}n. Let d(X,A) = miny∈A
∑n

i=1 1{Xi �=yi} denote the Hamming
distance of X to the set A. Prove that

Ed(X,A) ≤ I(A)
2P(A)

.

(Talagrand, 1999.)



10

Isoperimetry on the Hypercube
and Gaussian Spaces

The purpose of this chapter is to explore further the rich connection between concentration
and isoperimetry on the n-dimensional binary cube and also on Rn, equipped with the
canonical Gaussian measure.

The close relationship between concentration inequalities and isoperimetry is a recur-
ring theme of this book. Since our focus is on functions of independent random variables,
the associated measure spaces are product spaces. The simplest product space is the binary
hypercube, which deserves special attention not only because it is a canonical example but
also because the complex isoperimetric behavior of subsets of the hypercube have much to
teach us aboutmore general product spaces. Also, isoperimetric results for the binary hyper-
cube often lead naturally to their analogs for the canonical Gaussianmeasure via the central
limit theorem.

As a first example, in Section 4.4, we have seen that among all sets A ⊂ {–1, 1}n of a
given number of points (say, of size |A| = 2n–1), sub-cubes have the smallest edge boundary.
We proved this as an easy consequence of Han’s inequality, which is also at the basis of
logarithmic Sobolev inequalities, used in Chapter 5 to prove concentration via the entropy
method. This is in a sharp contrast with the fact that the vertex boundary is minimized by
Hamming balls (see Section 7.3). The contrast is sharp because, among all monotone sets,
Hamming balls maximize the size of the edge boundary (see Theorem 9.11) and at the
same time it is obvious that a sub-cube of size 2n–1 maximizes the size of the vertex boundary
among all monotone sets. Recall also fromChapter 7 that the vertex isoperimetric theorem
leads immediately to a sub-Gaussian concentration inequality for Lipschitz functions of n
independent symmetric Bernoulli variables.

In this chapter we introduce a third alternative for measuring the size of the boundary
of a subset of the binary hypercube and prove a corresponding isoperimetric inequality
(see Corollary 10.7 below). This inequality shows that edge and vertex boundaries cannot
be small at the same time, which explains, intuitively, the conflict between edge and ver-
tex isoperimetric problems mentioned above. This isoperimetric result is the consequence
of Bobkov’s inequality (Theorem 10.2), a powerful functional inequality which may be
regarded as a sharpening of the logarithmic Sobolev inequality of Theorem 5.1.
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One of the most important corollaries of Bobkov’s inequality is the Gaussian iso-
perimetric theorem. To describe this beautiful result, recall from Section 7.2 that the
classical isoperimetric problem asks which subsets ofRn haveminimal volume among those
with a given surface area (where volume and surface area are measured with respect to
the n-dimensional Lebesgue measure). According to the classical isoperimetric theorem
(Theorem 7.5), Euclidean balls are these extremal sets. As is emphasized in Chapter 7, an
equivalent formulation of the classical isoperimetric problem asks one to determine the sets
of a given volume such that the set of points within a certain distance to the set has minimal
volume. This second formulation avoids handling the notion of a surface area and allows
one to ask the same question in any metric measurable space.

A case of fundamental importance is that of Rn equipped with the canonical Gaussian
measure (i.e. with the standard normal distribution with mean vector (0, . . . , 0) and iden-
tity covariance matrix). For this case, the (Gaussian) isoperimetric problem is formulated
as follows: among all measurable sets in Rn with a given probability under the canonical
Gaussian distribution, for which ones does the set of points within a certain Euclidean
distance have minimal Gaussian probability?

In Section 7.2 we already pointed out that the Tsirelson–Ibragimov–Sudakov inequal-
ity may be used to obtain Gaussian isoperimetric inequalities. However, in this chapter we
show that the Gaussian isoperimetric problemmay be solved exactly.

The Gaussian isoperimetric theorem (see Theorems 10.15 and 10.14 below) states
the beautiful fact that half-spaces are the solution of the Gaussian isoperimetric theorem.
Following Bobkov, we prove this theorem starting from Bobkov’s inequality on the hyper-
cube and then applying the central limit theorem. This strategy is similar to that which
we used in Section 3.7 to derive the Gaussian Poincaré inequality from the Efron–Stein
inequality, and in Section 5.3 to prove the Gaussian logarithmic Sobolev inequality from its
analog on the hypercube.

We also extend Bobkov’s inequality on the hypercube to asymmetric Bernoulli distribu-
tions. This simple extension allows us to derive some further results on threshold widths for
certainmonotone sets. (Recall Chapter 9 for the basic results.) In particular, in Section 10.3
we provide a simple proof for some deep results pioneered byMargulis.

The main work of this chapter appears in Section 10.1. Once we prove Bobkov’s
inequality, the rest of the results follow easily.

10.1 Bobkov’s Inequality for Functions on the Hypercube

The purpose of this section is to prove an inequality for functions f : {–1, 1}n → R

defined on the binary hypercube. We restrict our attention to the case when the hypercube
is equipped with the uniform distribution, that is, we let X = (X1, . . . ,Xn) ∈ {–1, 1}n

be a vector of independent Rademacher random variables. We may think about
Bobkov’s inequality as another member of the family of inequalities to which the
Efron–Stein inequality and the logarithmic Sobolev inequality belong. Denote the
i-th component of the discrete gradient vector ∇f (x) = (∇1 f (x), . . . ,∇n f (x)) of f
by ∇i f (x) =

(
f (x) – f

(
x(i)
))/

2, where x(i) = (x1, . . . , xi–1, –xi, xi+1, . . . , xn). Then the
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Efron–Stein inequality, specialized in this case, states that Var ( f (X)) ≤ E‖∇f (X)‖2,
while by the logarithmic Sobolev inequality of Theorem 5.1, Ent( f 2) ≤ 2E‖∇f (X)‖2.

To state Bobkov’s inequality, we need to introduce the function

γ (x) = ϕ(�–1(x)) for x ∈ (0, 1),

where ϕ(x) = (1/
√
2π)e–x2/2 is the standard Gaussian density, and �(x) =

∫ x
–∞ ϕ(y) dy

is the Gaussian distribution function. We also define γ (0) = γ (1) = 0. We call γ the
Gaussian isoperimetric function. (In statistics 1/γ = (�–1)′ is known as the quantile-density
function of the normal distribution.) TheGaussian isoperimetric function γ is concave and
symmetric around 1/2.This is a consequence of the following lemma that summarizes some
of the basic properties of γ . We leave the proof as an easy exercise.

Lemma 10.1 The Gaussian isoperimetric function γ satisfies

1. γ ′(x) = –�–1(x) for all x ∈ (0, 1),
2. γ (x)γ ′′(x) = –1 for all x ∈ (0, 1),
3. (γ ′)2 is convex over (0, 1).

We are now ready to state the key result of this chapter.

Theorem 10.2 (BOBKOV’S INEQUALITY) Suppose X is uniformly distributed over {–1, 1}n.
Then for all n ≥ 1 and for all functions f : {–1, 1}n → [0, 1],

γ (E f (X)) ≤ E
√

γ ( f (X))2 + ‖∇f (X)‖2.
The next lemma, which describes the behavior of γ , helps us interpret Bobkov’s

inequality.

Lemma 10.3 For all x ∈ [0, 1/2],

x
√
1
2
log

1
x
≤ γ (x) ≤ x

√
2 log

1
x
.

Moreover,

lim
x→0

γ (x)

x
√
2 log 1

x

= 1.

This lemma implies that γ (x)/
(
x
√
log(1/x)

)
remains bounded as x tends to 0 (see

Fig. 10.1). The proof is left as an exercise (see Exercise 10.4).
Next we turn to the proof of Theorem 10.2. As in the logarithmic Sobolev inequalities

of Chapter 5 and the Bonami–Beckner inequality (see Theorem 5.18), Bobkov’s inequal-
ity is also proved by induction over dimension. First we prove the theorem for n = 1 and
then use Minkowski’s inequality in the induction argument to extend the result to all
dimensions n > 1.
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Figure 10.1 The Gaussian isoperimetric function γ (x) between the upper and lower bounds of

Lemma 10.3

Lemma 10.4 (THE CASE n = 1) Let X be a Rademacher random variable (i.e.
P{X = 1} = P{X = –1} = 1/2). For all functions f : {–1, 1} → [0, 1],

γ (E f (X)) ≤ E

√
γ ( f (X))2 +

( f (X) – f (–X))2

4
.

The proof is based on elementary algebraic manipulations based on the following
technical lemma.

Lemma 10.5 For any c ∈ (0, 1/2] and x ∈ [0, c], we have

γ (c + x)2 + γ (c – x)2 + 2x2 – 2γ (c)2 ≥ 2(γ ′(c))2x2

and

γ (c + x)2 – γ (c – x)2

x
≤ 4γ (c)γ ′(c).

Proof The first inequality follows by observing that both the function γ (c + x)2+
γ (c – x)2 + 2x2 – 2γ (c)2 – 2(γ ′(c))2x2 and its derivative are zero at x = 0, and it is
convex on [0, c). (This follows by the second and third properties ofγ in Lemma10.1.)

To prove the second inequality, first note that

γ (c + x)2 – γ (c – x)2

x
=
∫ x
0 ((γ 2(c + s))′ – (γ 2(c – s))′)ds

x
.

Since for s = 0 the integrand on the right-hand side is 4γ (c)γ ′(c), it suffices to
prove that the integrand is a nonincreasing function of s. To prove this, observe
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that since γ γ ′′ = –1, (by Lemma 10.1), the derivative of the integrand with respect
to s is

(γ 2(c + s))′′ – (γ 2(c – s))′′ = 2
(
(γ ′(c + s))2 – (γ ′(c – s))2

)
.

Since (γ ′(x))2, is convex and symmetric around 1/2, it is non-increasing on
(0, 1/2]. Thus, if c + s ≤ 1/2 then (γ ′(c + s))2 – (γ ′(c – s))2 ≤ 0 while if c + s ≥ 1/2
then (γ ′(c + s))2 = (γ ′(1 – c – s))2 ≤ (γ ′(c – s))2 as 1 – c – s ≥ c – s. In all cases,
(γ ′(c + s))2 – (γ ′(c – s))2 ≤ 0. This concludes the proof. �

Proof of Lemma 10.4. Introducing c = ( f (1) + f (–1))/2 and x = | f (1) – f (–1)|/2, the
statement of the lemmamay be written, equivalently, as

γ (c) ≤ 1
2

√
γ (c + x)2 + x2 +

1
2

√
γ (c – x)2 + x2. (10.1)

where c ∈ (0, 1) and x ∈ [0, min(c, 1 – c)]. As γ is symmetric around 1/2, we may
assume, without loss of generality, that 0 ≤ x ≤ c ≤ 1/2. It is convenient to introduce
the notation

h(x) = γ (c + x)2 + x2 – γ (c)2.

Squaring both sides of (10.1) and rearranging, (10.1) becomes

(γ (c)2 – h(x)) + (γ (c)2 – h(–x)) ≤ 2
√
(γ (c)2 + h(x))(γ (c)2 + h(–x)).

We may assume that the left-hand side is positive, otherwise there is nothing to prove.
Then, squaring both sides of the last inequality and rearranging, (10.1) is found to be
equivalent to

(h(x) – h(–x))2 ≤ 8γ (c)2(h(x) + h(–x)),

which may be rewritten as(
γ (c + x)2 – γ (c – x)2

)2 ≤ 8γ (c)2
(
γ (c + x)2 + γ (c – x)2 + 2x2 – 2γ (c)2

)
.

By the first inequality of Lemma 10.5, for all c ∈ (0, 1/2] for all x ∈ [0, c],

8γ (c)2
(
γ (c + x)2 + γ (c – x)2 + 2x2 – 2γ (c)2

) ≥ 16γ (c)2(γ ′(c))2x2.

So, in order to prove (10.1) under the assumption that (γ (c)2 – h(x)) + (γ (c)2 –
h(–x)) > 0, it suffices to check that

(γ (c + x)2 – γ (c – x)2)2 ≤ 16γ (c)2(γ ′(c))2x2.
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But as 0 ≤ x ≤ c ≤ 1/2, γ (c + x) ≥ γ (c – x), and γ ′(c) ≥ 0, this last inequality
follows from the second inequality of Lemma 10.5. �

With the case of n = 1 proved, we now turn to the induction step to complete the proof
of Bobkov’s inequality. We state and prove this step in a somewhat more general scenario
than what is needed for the proof of Bobkov’s theorem. This generality will be helpful when
we extend Bobkov’s inequality to the product of not necessarily symmetric Bernoulli distri-
butions on the hypercube.We show that if, for some functionα : (0, 1) → R, an inequality
like (10.1) holds for a distribution P on a setX , then it also holds for the n-fold product of
P on the product spaceX n.

Consider a vector X = (X1, . . . ,Xn) of independent random variables, whose compon-
ents take their values in a measurable set X . Assume that for each i = 1, . . . , n, we have an
operator ∇̃i that assigns a real-valued function X → R to a real-valued function X → R.
When we write ∇̃i f (x1, . . . , xn), it is implicitely understood that ∇̃i acts on the function
f (x1, . . . , xi–1, ·, xi+1, . . . , xn) with x1, . . . , xi–1, xi+1, . . . , xn fixed. Thus, in this case we con-
sider f as a function of its i-th variable only. The only requirement for ∇̃i is that it should
be measurable in the sense that if X is a random variable taking values in X n and f is
measurable, then ∇̃if (X) should be a random variable. Moreover, we assume that for any
f : X n → R, ∣∣∣∇̃iE

[
f (X) | Xi

]∣∣∣ ≤ E
[∣∣∣∇̃i f (X)

∣∣∣ | Xi

]
. (10.2)

Note that if X = {–1, 1}, the components of the discrete gradient vector
∇̃i f (x) = ∇i f (x) =

f (x)–f (x(i))
2 appearing in Bobkov’s inequality (Theorem 10.2) sat-

isfy this requirement. The main induction argument is summarized in the following
lemma.

Lemma 10.6 (INDUCTION LEMMA) Let X = (X1, . . . ,Xn) be a vector of independent ran-
dom variables taking values in the set X n. Assume that the operators ∇̃i, i = 1, . . . , n
satisfy condition (10.2). Assume that the function α : [0, 1] → [0,∞) is such that for all
i ≤ n and for all functions g : X → [0, 1],

α(Eg(Xi)) ≤ E
√

α(g(Xi))2 + |∇̃ig(Xi)|2.

Then for all functions f : X n → [0, 1],

α(E f (X)) ≤ E
√

α( f (X))2 + ‖∇̃f (X)‖2

where ‖∇̃f (X)‖2 =∑n
i=1
(∇̃i f (X)

)2.
Proof The lemma is proved by induction over n. For n = 1 there is nothing to prove, so let

n ≥ 2. The induction hypothesis is that the lemma holds for 1, . . . , n – 1.
Recall that En–1 stands for the conditional expectation operator conditioned on Xn

(i.e. integration with respect to X1, . . . ,Xn–1) and E(n) stands for expectation with
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respect to the variable Xn only (i.e. conditional on X1, . . . ,Xn–1). For each y ∈ X and
x(n) ∈ X n–1, denote fy(x(n)) = f (x(n), y). As usual, we denote X(n) = (X1, . . . ,Xn–1).

Fix xn ∈ X for now. Then

En–1

√
1
2

(
α
(
f
(
X(n), xn

))2 + ‖∇̃f
(
X(n), xn

) ‖2)

= En–1

√√√√α
(
fxn(X(n))

)2 + ‖∇̃ fxn(X(n))‖2
2

+

(
∇̃n f (X(n), xn)

)2
2

≥

⎛⎜⎜⎜⎝
(
En–1

√
α
(
fxn
(
X(n)

))2 + ‖∇̃fxn
(
X(n)

) ‖2)2

2
+

(
En–1

∣∣∣∇̃n f
(
X(n), xn

∣∣))2
2

⎞⎟⎟⎟⎠
1/2

where we used Minkowski’s inequality by taking, in Theorem 2.16, q = 2, the
X-variable to be uniform on {1, 2}, and the Y -variable to be X(n), and

Z =
√

α
(
fxn
(
X(n)

))2 + ‖∇̃fxn
(
X(n)

) ‖2
if the X-variable equals 1 and ∇̃n f

(
X(n), xn

)
if it equals 2.

As for each fixed xn, fxn is a function of n – 1 identically distributed independent
random variables, wemay apply the induction hypothesis to the first term on the right-
hand side of the inequality above and get

En–1

√
1
2

(
α
(
f
(
X(n), xn

))2 + ‖∇̃f
(
X(n), xn

) ‖2)

≥

√√√√α
(
En–1 fxn

(
X(n)

))2
2

+

(
En–1

∣∣∣∇̃n f
(
X(n), xn

)∣∣∣)2
2

≥

√√√√α
(
En–1 fxn

(
X(n)

))2
2

+

(
∇̃nEn–1 f

(
X(n), xn

))2
2

,

where the last line follows from our assumption on the operator ∇̃n.
Taking now expectation with respect to the distribution of Xn, we obtain

E
√

α( f (X))2 + ‖∇̃f (X)‖2

= E(n)
[
En–1

√
α
(
f
(
X(n),Xn

))2 + ‖∇̃f
(
X(n),Xn

) ‖2]
≥ E(n)

[√
α
(
En–1 fXn

(
X(n)

))2 + (∇̃nEn–1 fXn

(
X(n)

))2]
.
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Now let the function g : X → [0, 1] be defined by g(x) = En–1fx
(
X(n)) . Then the

right-hand side of the last inequality is just

E(n)
√

α (g(Xn))
2 +

(
∇̃g(Xn)

)2
which can be lower bounded by invoking the induction hypothesis once more. This
finally leads to

E
√

α( f (X))2 + ‖∇̃ f (X)‖2 ≥ α
(
E(n)g(Xn)

)
= α (E f (X)) . �

Combining Lemmas 10.4 and 10.6, we obtain Theorem 10.2.

10.2 An Isoperimetric Inequality on the Binary Hypercube

While the original purpose of Bobkov’s inequality was to provide a functional inequality
that implies the Gaussian isoperimetric theorem (see Theorem 10.14 below), it has proved
to be a powerful tool in understanding the isoperimetric structure of the binary hyper-
cube. Indeed, a trivial application of Theorem 10.2, described in this section, provides
an interesting interpolation between the edge and vertex isoperimetric theorems on the
hypecube.

As explained in the introduction of this chapter, the vertex isoperimetric theorem states
that, among all sets A ⊂ {–1, 1}d of a given size, Hamming balls minimize the size of the
vertex boundary ∂V(A) (defined as the set of vertices of {–1, 1}n that are outside A but are
connected with at least one vertex that belongs to A), while the size of the edge boundary
∂E(A) (i.e. the set of edges betweenA andAc) is minimized by sub-cubes. At the same time,
among all monotone sets, Hamming balls maximize the size of the edge boundary and sub-
cubes maximize the size of the vertex boundary. This apparent conflict between the sizes of
edge and vertex boundaries suggests that no monotone set can have a simultaneously small
edge and vertex boundary. This is indeed the case as we show it below in Corollary 10.10.

As a simple result of the same flavor, consider the following corollary of Bobkov’s
inequality.

LetA ∈ {–1, 1}n be a (not necessarilymonotone) set and consider the indicator function
f (x) = 1{x∈A}. Since γ (0) = γ (1) = 0, Bobkov’s inequality, applied to f , implies

γ (P(A)) ≤ E‖∇1{x∈A}‖ =
1
2
E

√√√√ n∑
i=1

(
1{x∈A} – 1{x(i)∈A}

)2
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where P(A) = |A|2–n is the probability of A under the uniform distribution. Defining the
symmetric vertex boundary of A by ∂V(A) = ∂V(A) ∪ ∂V(Ac), we clearly have

γ (P(A)) ≤ E‖∇1{x∈A}‖ = E1{X∈∂V (A)}‖∇1{x∈A}‖,

so by the Cauchy–Schwarz inequality, we obtain

γ (P(A)) ≤
√
P(∂V(A))

√
E‖∇1{X∈A}‖2.

Now clearly, 4‖∇1{x∈A}‖2 =∑n
i=1(1{x∈A} – 1{x(i)∈A})

2 is the number of edges between A
to Ac incident to x if x ∈ ∂V(A). Thus, E‖∇1{X∈A}‖2 = |∂E(A)|2–(n+1) = I(A)/2 where
I(A) is the total influence of A. Thus, we have the following result.

Corollary 10.7 (AN ISOPERIMETRIC INEQUALITY ON THE CUBE) For any subset A of
{–1, 1}n,

P
(
∂V(A)

) · I(A) ≥ 2γ (P(A))2 .

The lemma asserts that the size of the edge boundary (total influence) and the ver-
tex perimeter (in the sense of |∂V(A)|) cannot be simultaneously small if |A| is large.
For example, for any set with cardinality |A| = 2n–1, we see that P(∂V(A))I(A) ≥ 1/π .
Note that for the sub-cube A = {x : x1 = 1}, P(∂V(A))I(A) = 1 and for the Hamming ball
A = {x :

∑
i xi > 0} (for n even), P(∂V(A))I(A) ∼ 4/π is also bounded by a constant so

the inequality above is essentially saturated by both extremes.
In the next section we show that for monotone sets, Corollary 10.7 may be refined by

replacing the symmetric vertex boundary ∂V(A) by the “real” vertex boundary ∂V(A).

10.3 Asymmetric Bernoulli Distributions and Threshold
Phenomena

In this section we present a variant of Bobkov’s inequality (Theorem 10.2). The result
shownhere differs from that of Bobkov in three aspects. First, it holds not only for uniformly
distributed vectors over the discrete hypercube {–1, 1}n, but also for products of asym-
metric Bernoulli distributions. That is, X = (X1, . . . ,Xn) is supposed to have independ-
ent, identically distributed components with P{Xi = 1} = 1 – P{Xi = –1} = p for some
p ∈ (0, 1). Second, we restrict out attention to monotone functions f : {–1, 1}n → [0, 1],
that is, we assume that for all i = 1, . . . , n and x1, . . . , xi–1, xi+1, . . . , xn ∈ {–1, 1},

f (x1, . . . , xi–1, –1, xi+1, . . . , xn) ≤ f (x1, . . . , xi–1, 1, xi+1, . . . , xn).
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Finally, the discrete gradient ∇f is replaced by its “positive part” ∇+ f = (∇+
1 f , . . . ,∇+

n f )
whose components are defined by

∇+
i f =

(
f (x) – f (x(i)

)
+
.

Theorem 10.8 (TILLICH-ZÉMOR INEQUALITY) Let p ∈ (0, 1), let f : {–1, 1}n → [0, 1]
be a monotone function and let X = (X1, . . . ,Xn) be a vector of independent Bernoulli
random variables with P{Xi = 1} = 1 – P{Xi = –1} = p. Then

γ (E f (X)) ≤ E
√

γ ( f (X))2 + 2 log(1/p)‖∇+f (X)‖2.

The proof of the theorem is similar to that of Bobkov’s inequality. First we prove it for
n = 1 and then use the induction lemma (Lemma 10.6) to extend it to higher dimensions.

Lemma 10.9 Let X be a random sign, with P{X = 1} = p. For all monotone functions
f : {–1, 1} → [0, 1],

γ (E f (X)) ≤ E
√

γ ( f (X))2 + 2 log(1/p)( f (x) – f (–x))2+.

Proof Let f (–1) = c and f (1) = c + x, with x ∈ [0, 1 – c]. Let q = 1 – p. The inequality in
the lemma is equivalent to

γ (c + px) – qγ (c) ≤ p
√

γ (c + x)2 + 2x2 log(1/p).

The left-hand side is nonnegative since γ is concave and nonnegative. Thus, equival-
ently, we need to prove

(γ (c + px) – qγ (c))2 – p2γ (c + x)2 – 2p2x2 log(1/p) ≤ 0.

For a fixed value of c, let us denote the expression on the left-hand side by F(x).
Whatever the value of c, F(0) = 0 and F′(0) = 0, so it suffices to prove thatF is concave
on [0, 1 – c). The first and second derivatives may be computed and simplified using
Lemma 10.1, and we obtain

F′(x)
2

= pγ ′(c + px) (γ (c + cx) – qγ (c)) – 2p2x log(1/p) – p2γ ′(c + x)γ (c + x)

and

F′′(x)
2

= p2
(
(γ ′(c + px))2 – (γ ′(c + x))2

)
– 2p2 log(1/p) – p2qγ (c)γ ′′(c + px).
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Note that

(γ ′(c + px))2 – (γ ′(c + x))2 = 2
∫ c+px

c+x
γ ′(t)γ ′′(t)dt

= –2
∫ c+px

c+x

γ ′(t)
γ (t)

dt (by Lemma 10.1)

= 2 log
γ (c + x)
γ (c + px)

.

This allows us to further simplify the expression of F′′(x):

F′′(x)
2p2

= 2 log
pγ (c + x)
γ (c + px)

+
qγ (c)

γ (c + px)

= 2 log
(
pγ (c + x) + qγ (c)

γ (c + px)
–

qγ (c)
γ (c + px)

)
+

qγ (c)
γ (c + px)

≤ 2 log
(
1 –

qγ (c)
γ (c + px)

)
+

qγ (c)
γ (c + px)

,

where the last inequality follows from the fact that γ (c + x) is a concave and nonneg-
ative function of x on [0, 1 – c) while log is increasing.

The lemma then follows by observing that 2 log(1 – u) + u is zero at u = 0 and
nonincreasing on [0, 1). �

Proof of Theorem 10.8. The proof is an almost immediate consequence of Lemma
10.9 and the general induction argument. The only issue is raised by the fact
that Lemma 10.6 formally does not handle the restriction to monotone functions.
However, if f is monotone, so are En–1 fx(X(n)) and fXn and the proof of Lemma 10.6
goes through. �

We may now apply Theorem 10.8 for the indicator function f (x) = 1{x∈A} of any
monotone subset of the binary hypercube.

For any set A ⊂ {–1, 1}n, define the function

hA(x) = ‖∇+1{x∈A}‖2 =
n∑
i=1

(
1{x∈A} – 1{x(i)∈A}

)
+
.

Clearly, hA(x) = 0 if x /∈ A and otherwise hA(x) is the number of edges leaving A from x.
E
√
hA(X) may be interpreted as some kind of a “surface area” of the setA and the following

corollary is an isoperimetric inequality based on this notion. It sharpens and generalizes
Corollary 10.7 for monotone sets.

Observe that
(
1{x∈A} – 1{x(i)∈A}

)
+
= 1 if and only if the i-th variable is pivotal for A and

xi = 1. Since these two events are independent, we conclude that EhA(X) = p · Ip(A) is p
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times the total influence of the set A (recall Section 9.5). Then by the Cauchy–Schwarz
inequality,

E
√
hA(X) = E

√
hA(X)1{X∈∂VA} ≤

√
pIp(A)Pp(∂V(A)

(recall that Pp(A) =
∑

x∈A p‖x‖(1 – p)n–‖x‖).

Corollary 10.10 (AN ISOPERIMETRIC INEQUALITY FOR MONOTONE SETS) Let
p ∈ (0, 1), and let X = (X1, . . . ,Xn) be a vector of independent Bernoulli random vari-
ables with P{Xi = 1} = 1 – P{Xi = –1} = p. Then for any monotone set A ∈ {–1, 1}n,

E
√
hA(X) ≥ 1√

2 log(1/p)
γ
(
Pp(A)

)
.

In particular,

2Pp(∂V(A)) · Ip(A)p log 1p ≥ γ (P(A))2.

Part of the beauty of these inequalities lies in their dimension-free nature. Indeed, n does
not appear anywhere in the expressions. To appreciate the sharpness of this result, it is
instructive to check the cases of the Hamming ball A =

{
x :

∑n
i=1 xi ≥ n/2

}
, the sub-cube

{x : x1 = 1}, and the singleton {(1, . . . , 1)}.
Aswe saw in Section 9.6, inequalities for the total influencemay be used to study the evol-

ution of the probability Pp(A) of a monotone set A ∈ {–1, 1}n. Indeed, by Russo’s lemma,
dPp(A)/dp = Ip(A). For example, Corollary 10.10 immediately implies that for sets with a
small vertex boundary, Pp(A) experiences a sharp transition around the critical probability
p1/2 (defined as the value for which Pp1/2(A) = 1/2 (see Exercise 10.1). Another applic-
ation of Corollary 10.10 is shown by the next result, which interestingly gives sufficient
conditions for amonotone set to guarantee narrow thresholds. This corollary of theTillich–
Zémor inequality sharpens a classical result defined by Margulis. Recall that� denotes the
Gaussian distribution function.

Theorem 10.11 (MARGULIS’S GRAPH CONNECTIVITY THEOREM) Let k > 0 and let
A ⊂ {–1, 1}n be a monotone set such that for all x ∈ ∂V(A), hA(x) ≥ k. Then

Pp(A) ≤ �
(√

2k
(√

– log p1/2 –
√
– log p

))
for 0 < p < p1/2

Pp(A) ≥ �
(√

2k
(√

– log p1/2 –
√
– log p

))
for p1/2 < p < 1.

Proof Since hA(x) ≥ k1{x∈∂V (A)}, the total influence may be bounded from below as

Ip(A) = EhA(X) ≥ E
√
khA(X) ≥

√
k

2 log(1/p)
γ
(
Pp(A)

)
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by Corollary 10.10. Thus, by Russo’s lemma, we have

dPp(A)
dp

≥
√

k
2p2 log(1/p)

γ
(
Pp(A)

)
.

Since γ (s)γ ′′(s) = –1 (by Lemma 10.1), this may be re-written as

γ ′′(Pp(A))
dPp(A)
dp

≤ –

√
k

2p2 log(1/p)
.

Suppose p < p1/2. Integrating this inequality between p and p1/2, we obtain

γ ′(Pp1/2(A)) – γ ′(Pp(A)) ≤
√
2k
(√

– log p1/2 –
√
– log p

)
.

The proof of the first inequality is completed by noting that γ ′(Pp1/2(A)) = γ ′
(1/2) = 0 and γ ′(Pp(A))) = –�–1(Pp(A)), by Lemma 10.1. The second inequality
follows similarly. �

The theorem above implies that if k is large, that is, if every vertex on the boundary of
A has many edges connecting it to the complement of A, then Pp(A) experiences a sharp
transition around the critical value p1/2. The following example explains the name of the
theorem.

Example 10.12 (CONNECTIVITY OF RANDOM SUBGRAPHS OF A FINITE GRAPH)
Consider the following random graph model. Let G = (V , E) be a finite connected
graph with vertex set V and edge set E. Now remove every edge of G at random,
independently, with probability p. Let A be the event that the remaining graph is dis-
connected. Wemay represent A as a subset of {–1, 1}|E| as follows: every binary vector
x ∈ {–1, 1}|E| represents a graph such that a component 1 represents a removed edge
of G and –1 a remaining edge. Then the set A representing all connected graphs is
clearly monotone. We are interested in the evolution of Pp(A), the probability that the
remaining graph is disconnected. Suppose that the graph G is k + 1-edge-connected,
that is, the graph remains connected after the removal of any set of k edges. In this
case, for any disconnected graph x ∈ ∂V(A) on the boundary of A, hA(x) ≥ k and
therefore Theorem 10.11 is applicable. It shows that as p grows from 0 to 1, the prob-
ability Pp(A) jumps from values close to 0 to values close to 1 in an interval of length
O(1/

√
k).

Remark 10.3 The “surface area” E
√
hA(X) may also be related to the sum of the squared

influences studied in Chapter 9. In fact,
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√√√√ n∑
i=1

Ipi (A)2 =

(
1
p2

n∑
i=1

(
E
(
1{X∈A} – 1{X(i)∈A}

)
+

)2)1/2

≤ 1
p
E

√√√√ n∑
i=1

(
1{X∈A} – 1{X(i)∈A}

)2
+

=
1
p
E
√
hA(X),

where the inequality follows from the fact that if Y1, . . . , Yn are random variables with
a finite second moment, then

(∑n
i=1(EYi)

2)1/2 ≤ E
(∑n

i=1 Y
2
i
)1/2 by the convexity of

the Euclidean norm and Jensen’s inequality.

10.4 The Gaussian Isoperimetric Theorem

In this section we prove the celebrated Gaussian isoperimetric theorem, which states that,
among all sets of a given Gaussian measure, the Gaussian surface area (defined below)
is minimized by half-spaces. The proof presented here is based on Bobkov’s inequality
(Theorem 10.2). The key ingredient is a functional inequality which extends Theorem 10.2
from the uniform distribution over the hypercube to the Gaussian distribution using the
central limit theorem. The argument is similar to that by which we obtained the Gaussian
Poincaré inequality or the Gaussian logarithmic Sobolev inequality from their discrete
analogues.

Theorem10.13 (BOBKOV’S GAUSSIAN INEQUALITY) Let X = (X1, . . . ,Xn) be a vector of
independent standard Gaussian random variables. Let f : Rn → [0, 1] be a differentiable
function with gradient∇f . Then

γ (E f (X)) ≤ E
√
(γ ( f (X))2) + ‖∇f (X)‖2,

where γ = ϕ ◦ �–1 is the Gaussian isoperimetric function.

Proof It suffices to prove that the theorem holds for all f : Rn → [0, 1] that are twice dif-
ferentiable and have a compact support because the extension to all differentiable f
may be achieved through a routine density argument.

Let k be a positive integer, and let ε = (εi,j)i=1,...,n,j=1,...,k be a vector of independent
Rademacher random variables. Define the function fk : {–1, 1}nk → [0, 1] by

fk(ε) = f

⎛⎝ k∑
j=1

εi,j√
k
, . . . ,

k∑
j=1

εn,j√
k

⎞⎠.

Now we may apply Theorem 10.2 for the function fk and obtain

γ (E fk(ε)) ≤ E
√

γ 2( fk(ε)) + ‖∇fk(ε)‖2.
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(Note that, with an abuse of notation, here ∇ stands for the discrete gradient,
introduced in Section 10.1.)

Now all we have to do is to let k go to infinity on both sides of the inequality.
Indeed, by the central limit theorem, limk→∞ γ (E fk(ε)) = γ (E f (X)), where X is a
vector of n independent standard Gaussian random variables. On the other hand, pro-
ceeding exactly the same way as in the proofs of the Gaussian Poincaré and Gaussian
logarithmic Sobolev inequalities, by the central limit theorem, we also have

lim
k→∞

E
√

γ 2( fk(ε)) + ‖∇fk(ε)‖2 = E
√

γ ( f (X))2 + ‖∇f (X)‖2. �

In the rest of this section we show how Bobkov’s Gaussian inequality may be used to
derive the Gaussian isoperimetric theorem.

Recall that the t-blowup of a set A ⊂ Rn is defined by

At =
{
x : d(A; x) < t

}
where d(A, x) = infy∈A ‖x – y‖ is the Euclidean distance of x to the set A.

In analogy with the definition of surface area used in Section 7.2, me may define the
Gaussian boundary measure of a Borel set A by

lim
t↘0

P(At \ A)
t

whenever the limit exists, where P is the canonical Gaussian measure onRn.
The Gaussian isoperimetric problem is to determine which (Borel) sets A have minimal

Gaussian boundary measure among all sets in Rn with a given probability p. The Gaussian
isoperimetric theorem states the beautiful fact that the extremal sets are linear half-spaces
in all dimensions and for all p:

Theorem10.14 (GAUSSIAN ISOPERIMETRIC THEOREM) Let P be the canonical Gaussian
distribution onRn and let A ∈ Rn be a Borel set. Then

lim inf
t→0

P(At \ A)
t

≥ γ (P(A)).

Moreover if A is a half-space defined by A = {x : x ∈ Rn, x1 ≤ z}, then

lim
t→0

P(At \ A)
t

= γ (P(A)) = ϕ(z).

(Recall that γ (x) = ϕ(�–1(x)) denotes the Gaussian isoperimetric function.)

Proof The theorem is an almost immediate consequence of Theorem 10.13. However, the
Gaussian isoperimetric theorem is concernedwith characteristic functions of setswhile
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Bobkov’s Gaussian inequality deals with differentiable functions. We apply Bobkov’s
inequality to smooth approximations of indicator functions.

First note that ifP(A \ A) > 0 there is nothing to provewhereA denotes the closure
of A. Hence we may assume that P(A \ A) = 0 and indeed, without loss of generality,
we may even assume that A is open.

For each t > 0, define ft : Rn → [0, 1] by

ft(x) =
(
1 –

d(A, x)
t

)
+
.

Clearly, ft(x) = 1 for all x ∈ A, ft(x) = 0 for x /∈ At , and ft is 1/t-Lipschitz. However, ft
is not differentiable. We may further smooth it by convolution with a Gaussian kernel.
Thus, for σ > 0, we define

ft,σ (x) =
∫

Rn
ft(y)

1
(
√
2πσ )n

exp
(
–
‖x – y‖2
2σ 2

)
dy.

For each σ > 0, the function ft,σ still maps Rn to [0, 1], it is infinitely many times
differentiable, and remains 1/t-Lipschitz (Exercise 10.11).

Now we may apply Bobkov’s Gaussian inequality. Indeed, if X denotes a standard
Gaussian vector, then for each t, σ > 0, by Theorem 10.13,

γ (E ft,σ (X)) ≤ Eγ ( ft,σ (X)) + E‖∇ft,σ (X)‖.

If we let σ tend to 0, by the dominated convergence theorem, we have

lim
σ→0

γ (E ft,σ (X)) = γ (E ft(X)) , and lim
σ→0

Eγ ( ft,σ (X)) = Eγ ( ft(X)).

Since ft(x) = 1 for x ∈ A and ft(x) = 0 for x /∈ At , we have γ ( ft(x)) ≤
(1/

√
2π)1{At\A} and therefore Eγ ( ft(X)) ≤ (1/

√
2π)P{At \ A}. Now by the

Lipschitz property of ft,σ , we have ‖∇ft,σ (X)‖ ≤ 1/t. Also, if x is in the interior of A or
outside the closure of At , ‖∇ft,σ (x)‖ → 0 as σ → 0. If x is in the interior of At \ A,
then ‖∇ft,σ (x)‖ → 1/t. Hence, by dominated convergence,

lim
σ→0

E‖∇ft,σ‖ =
P(At \ A)

t
.

Combining all the above,

γ (E ft(x)) ≤
(
1/
√
2π
)
P(At \ A) + P(At \ A)

t
.
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Letting finally t → 0,

γ (P(A)) ≤ lim inf
t→0

P(At \ A)
t

which is just the lower bound in the Gaussian isoperimetric theorem.
The fact that half-spaces achieve equality is obvious. �

Next we describe an equivalent version of the Gaussian isoperimetric theorem in the
manner of measure concentration described in the introduction of Chapter 7. It gives a
sharp lower bound for the Gaussian measure of the blowup of any set in terms of the
measure of the set.

Theorem 10.15 (GAUSSIAN CONCENTRATION THEOREM) Let P be the canonical
Gaussian distribution onRn and let A ⊂ Rn be a Borel set. Then for all t ≥ 0,

P(At) ≥ �
(
�–1(P(A)) + t

)
.

Equality holds if A is a half-space.

In the proof we need the following simple technical observation whose proof is left as an
exercise.

Proposition 10.16 If A is a finite union of open balls in Rn, then P(At) is a differentiable
function of t > 0.

Proof of Theorem 10.15. We call a Borel set A ⊂ Rn smooth if P(At) is a differentiable
function of t on (0,∞).

Observe that if A is smooth, then

d�–1(P(At))
dt

=
dP(At)
dt

× 1
γ (P(At))

.

It follows from the Gaussian isoperimetric theorem that the right-hand side is at least
1 since dP(At)

dt = lims→0
P(At+s\At)

s . By integrating this inequality,

�–1 (P (At)) = �–1 (P(A)) +
∫ r

0

d�–1(P(As))
ds

ds

≥ �–1 (P(A)) + t.

Hence, the theorem holds for all smooth sets. The remaining work is to extend this to
all Borel sets.

Note first that if P(A) = 0, the theorem is automatically satisfied and therefore
we may focus on Borel sets A with positive probability. By Proposition 10.16, the
concentration property holds for any finite union of open balls.
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Now letA be any Borel set with P(A) > 0. Let 0 < ε < t. Then by Vitali’s covering
theorem, there exists a countable collection of disjoint open balls {B1,B2, . . .}, all
intersecting A and diameter at most ε, such that P(A \ ∪∞

n=1Bn) = 0. But then

P(At) ≥ P(∪∞
n=1(Bn)t–ε)

= lim
n→∞ P (∪n

i=1(Bi)t–ε)

≥ lim
n→∞�

(
�–1 (P(∪n

i=1Bi)) + t – ε
)

= �
(
�–1 (P(∪∞

n=1Bn)) + t – ε
)

≥ �
(
�–1 (P(A)) + t – ε

)
.

The argument is completed by taking ε to 0. �

Note that the Gaussian concentration theorem and the Gaussian isoperimetric theorem
are, in fact, equivalent in the sense that the Gaussian concentration theorem implies that for
every Borel set A ⊂ Rn,

lim inf
t→0

P(At \ A)
t

≥ lim inf
t→0

� (�–1(P(A)) + t) – � (�–1(P(A)))
t

= γ (P(A))

which is just the statement of Theorem 10.14. See Exercise 10.7 for a more general
argument.

10.5 Lipschitz Functions of Gaussian RandomVariables

Recall that by the Gaussian concentration inequality (Theorem 5.6), any Lipschitz func-
tion of independent Gaussian random variables has sub-Gaussian tails. This result may
be sharpened by combining the Gaussian concentration theorem (Theorem 10.15) with
Lévy’s inequality (Theorem 7.1). We obtain the following.

Theorem 10.17 Let X = (X1, . . . ,Xn) be a vector of n independent standard normal random
variables. Let f : Rn → R denote a Lipschitz function with Lipschitz constant L and let
Mf (X) denote a median of f (X). Then, for all t > 0,

P
{
f (X) –M f (X) ≥ t

} ≤ 1 – �(t/L).

Recall that, according to Gordon’s inequality (Exercise 7.8), 1 – �(t) ≤
(1/t

√
2π)e–t2/2. The Gaussian concentration inequality fails to capture the correct-

ive factor t–1. The inequality of Theorem 10.17 cannot be improved in general as for
f (x) = n–1/2

∑n
i=1 xi, equality is achieved for all t > 0. Note, however, that the refine-

ment above bounds the probability of deviations around the median rather than around
the mean.
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10.6 Bibliographical Remarks

Bobkov’s inequality (Theorem 10.2) on the hypercube was first established by Bobkov
(1997) as a first step in his elementary proof of the Gaussian isoperimetric inequal-
ity. It is Bobkov’s argument that we follow in this chapter. Bobkov’s induction lemma
(Lemma 10.6) was further generalized by Bobkov and Götze (1999, Lemma 2.1).

Theorem 10.8 is due to Tillich and Zémor (2001), as is Corollary 10.10. The history of
this inequality goes back toMargulis (1974) and was subsequently improved by Talagrand
(1993), and Bobkov and Götze (1999). It was Talagrand (1993) who promoted the use
of E

√
hA(X) as an adequate measure of surface area for monotone subsets of the hyper-

cube. Linial and Rozenman (2002) characterized the monotone sets of a given volume that
minimize the surface area E

√
hA(X) under the uniform distribution.

Talagrand (1997) proved that under the uniform probability on {–1, 1}n, E
√
hA(X) can

be O(1) only if
∑n

i=1 Ii(A)
2 is �(1). Talagrand (1997) also proves that there exist b > 0

and a ∈ (0, 1/2) such that for every monotone set A ⊂ {–1, 1}n,

E‖∇1{A}‖ ≥ bP(A)(1 – P(A))
(
log

e
P(A)(1 – P(A))

)1/2–a
(
log

e∑
i≤n I

2
i (A)

)a

,

where P is the uniform distribution over {–1, 1}n.
The Gaussian isoperimetric theorem was first established independently by Borell

(1975) and Tsirelson and Sudakov (1974). Borell’s proof relied on Lévy’s isoperimetric
theorem for Euclidean spheres.

In a series of papers Ehrhard developed a proof of the Gaussian isoperimetric theorem
based on Gaussian rearrangment techniques (see Ehrhard (1982, 1983b, 1983a, 1984,
1986), and also Borell (1986).

Ledoux (1996) proved a version of Theorem 10.14 with sub-optimal constants using
semigroup techniques.

The equivalence between the Gaussian isoperimetric theorem (Theorem 10.15) and
Bobkov’s Gaussian inequality (Theorem 10.13) was pointed out by Ehrhard (1984), but
see also Bakry and Ledoux (1996), Capitaine, Hsu, and Ledoux (1997), and Barthe and
Maurey (2000).

The proof of Theorem 10.13 given here is from Bobkov (1997). The theorem is exten-
ded in Barthe and Maurey (2000) who also provide a proof for Theorem 10.13 based on
stochastic calculus.

Borell and Ehrhard (see Ehrhard (1986)) obtained the followingGaussian version of the
Brunn–Minkowski inequality: for all convex sets A,B inRn,

�–1 (P(λA + (1 – λ)B)) ≥ λ�–1 (P(A)) + (1 – λ)�–1 (P(B)) (10.4)

where P is the canonical Gaussian measure onRn.
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10.7 E X ERC I S E S

10.1. (SHARP THRESHOLD FOR SETS WITH SMALL VERTEX BOUNDARY) Let
A ∈ {–1, 1}n be a nonempty monotone set and let Pp(A) be its probability under
the product of Bernoulli(p)measures. For a ∈ [0, 1], let pa be the unique value such
that Ppa(A) = a. Show that for any ε ∈ (0, 1/2),

p1–ε – p1/2 ≤ (log 2)(1/2 – ε)
ε2 log(1/ε)

inf
q∈(1/2,1–ε)

Pq(∂V(A)).

Derive a similar upper bound for p1/2 – pε . Hint: use Corollary 10.10.
10.2. (CHEEGER CONSTANT FOR UNIVARIATE DISTRIBUTIONS) Let P denote a prob-

ability distribution on Rn. Let αP denote the associated isoperimetric function
defined, for p ∈ (0, 1),

αP(p) = inf
A⊂Rn:P(A)=p

lim inf
t→0

P(At \ A)
t

where the infimum is taken over all measurable sets with probability p. The Cheeger
constant of P is defined by

κ(P) = inf
p∈(0,1)

αP(p)
min(p, 1 – p))

.

When n = 1, let F denote the distribution function of P. Assume that P is absolutely
continuous and let f denote its density. Prove that

κ(P) = ess inf
a<x<b

f (x)
min(F(x), 1 – F(x))

,

where a = inf{x : F(x) > 0} and b = sup{x : F(x) < 1}.
Compute κ(P) for the standard Gaussian distribution and for the Laplace distri-

bution (whose density is 1
2 exp(–|x|). (See Bobkov and Houdré (1997).)

10.3. (CHEEGER CONSTANT IN PRODUCT SPACES) With the notation of the previous
exercise, let Pn denote the n-fold product of the measure P on the real line. Prove
that

κ(Pn) ≥ 1
2
√
6
κ(P).

(Bobkov and Houdré (1997, Theorem 1.1)).
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10.4. (APPROXIMATION OF THE GAUSSIAN ISOPERIMETRIC FUNCTION) Prove
Lemma 10.3. Hint: the lower bound on γ follows easily from Gordon’s inequality
(Exercise 7.8). The upper bound follows from Lemma 10.9.

10.5. (GAUSSIAN MEASURE) Let A = {x : x ∈ Rn, 〈x, u〉 < λ} be a half-space inRn for
some u ∈ Rn and λ ∈ R. Let P denote the canonical Gaussian distribution on Rn.
Show that for any t > 0,

�–1(P(At)) = �–1(P(A)) + t.

10.6. (PROOF OF PROPOSITION 10.16) Let P be an absolutely continuous probability
distribution on Rn and let A be a finite union of open balls. Prove that P(At) is a
differentiable function of t > 0.

10.7. (FROM ISOPERIMETRY TO CONCENTRATION) Assume that a probability distri-
bution P onRn satisfies, for all Borel sets A ⊂ Rn,

lim inf
t↘0

P(At \ A)
t

≥ cf (F–1(P(A))),

where c ∈ (0, 1] is a constant and F is a continuously differentiable distribution
function overR and f its derivative. Prove that for all Borel sets A and all t ≥ 0,

P(At) ≥ F
(
F–1(P(A)) + ct

)
.

10.8. (FUNCTIONAL INEQUALITIES INVOLVING α(x) = x(1 – x)) Consider the dis-
crete gradient ∇i on the cube {–1, 1}n whose components are defined by
∇+

i f (x) = ( f (x) – f (x
(i))+. LetX = (X1, . . . ,Xn) be a vector of independent random

signs such that P{X = 1} = 1 – P{X = –1} = p. Denote κ(p) = (1 – p)/(1 + p).
Prove that for all functions f : {–1, 1}n → [0, 1],

α(E f (X)) ≤ E
√

α( f (X))2 + max(κ(p), κ(1 – p))‖∇+f (X)‖2.

Show that if f is monotone increasing,

α(E f (X)) ≤ E
√

α( f (X))2 + κ(p)‖∇+f (X)‖2.

Show that for any monotone set A ⊂ {–1, 1}n,

E‖∇+1{A}‖ ≥
√
1 + p
1 – p

P(A)(1 – P(A)).

Is this inequality tight for the majority function, dictatorships, singletons? See
Bobkov and Götze (1999, page 254, Proposition 2.3).
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10.9. (SHARP THRESHOLD IN CHANNEL CODING) A binary linear block code C of
length n is a subset of {0, 1}n such that for any u, v ∈ C, u⊕ v ∈ C where⊕ denotes
coordinate-wise addition modulo 2. Let C be a binary linear block code such that
the Hamming distance of any two distinct elements of C is at least 2�. Suppose
an element (a codeword) v ∈ C of the code is transmitted over a binary symmetric
channelwith crossover probability p ∈ (0, 1). This means that the receivedmessage
is v⊕ X where X is a vector of i.i.d. Bernoulli (p) random variables. If maximum
likelihood decoding is used, then the decoder picks an element of C that is closest
(inHamming distance) to v⊕ X. LetAv ⊂ {0, 1}n be the set such that for all x ∈ Av,
v⊕ x is decoded back to v. The decoding error associated with the codeword v is
defined by errv(p) = 1 – P{X ∈ Av}. Denote by pc by errv(pc) = 1/2. Use Theorem
10.11 to show that for all v ∈ C,

errv(p) ≤ �
(√

2�
(√

– log pc –
√
– log p

))
for 0 < p < pc

errv(p) ≥ �
(√

2�
(√

– log pc –
√
– log p

))
for pc < p < 1.

(Tillich and Zémor (2001, Theorem 3)).
10.10. (BOBKOV’S GAUSSIAN INEQUALITY IMPLIES THE GAUSSIAN LOGARITHMIC

SOBOLEV INEQUALITY) Derive the Gaussian logarithmic Sobolev inequal-
ity (Theorem 5.4) from Bobkov’s inequality (Theorem 10.13). Is it possible to
derive Theorem 5.1 from Theorem 10.2 in the same way?Hint: consider√

log 1
ε

ε

(
E
√

γ 2(εf 2) + ‖ε∇f 2‖2 – γ (εE f 2)
)
,

let ε → 0, and use limε→0 γ (ε)/
(
ε
√
2 log(1/ε)

)
= 1. (Ledoux (2000) notes

that the fact that the logarithmic Sobolev inequality is a consequence of Bobkov’s
inequality was pointed out byW. Beckner.)

10.11. (REGULARIZATION ARGUMENT IN THE PROOF OF THE GAUSSIAN ISOPERI-
METRIC THEOREM) Show that the function ft,σ : Rn → [0, 1], defined in the
proof of the Gaussian isoperimetric theorem is infinitely many times differentiable,
and 1/t-Lipschitz for all σ > 0.

Check furthermore that when σ → 0, ‖∇ft,σ‖ → 0 outsideAt \ A, and tends to
1/t in At \ A.

10.12. (GAUSSIAN ISOPERIMETRY AND THE BRUNN–MINKOWSKI INEQUALITY)
Derive the Gaussian isoperimetric theorem for convex sets from the Gaussian
Brunn–Minkowski inequality (see inequality (10.4)).
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The Variance of Suprema
of Empirical Processes

One of the principal driving forces behind the development of concentration inequalities
has been the interest in understanding themagnitude of stochastic fluctuations of a norm of
a sum of independent vector-valued random variables, or, equivalently, the supremumof an
empirical process. This, and the next two chapters are dedicated to this subject.We are now
prepared to apply the machinery developed in the previous chapters to this particular case.
Concentration inequalities for the suprema of empirical processes have countless applica-
tions in probability, statistics, machine learning, harmonic analysis, and high-dimensional
geometry, to name but a few principal areas.

In the first chapter devoted to this topic, we focus our attention on the variance of the
supremum of an empirical process. In this relatively simple problem, we gain insight into
some of the principal phenomena in a transparent way. In the subsequent two chapters,
technically more challenging exponential concentration inequalities are developed and
some tools for bounding the expected value are surveyed.

We start by defining what we mean by an empirical process. To avoid complications
arising from measurability problems, we only consider processes indexed by countable
index sets. In fact, the reader will not lose the essence of any argument by considering finite
index sets only.

Let T denote a countable index set. Suppose that we are given, for each i = 1, . . . , n, a
collection Xi = (Xi,s)s∈T of real-valued random variables and assume that X1, . . . ,Xn are
independent but not necessarily identically distributed. The empirical process indexed by
T is the collection of random variables

∑n
i=1 Xi,s, s ∈ T . The supremum of this empirical

process is simply

Z = sup
s∈T

n∑
i=1

Xi,s.

If T contains only one element, then Z is a sum of real-valued random variables. However,
if T has more elements, then understanding the behavior of the random variable Z is more
complicated.
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One may attempt to analyze suprema of empirical processes by decomposing the
problem in two parts. One part is understanding the behavior of the expected value EZ
of the supremum and the other is determining, or at least bounding, the random fluctu-
ations of Z around its expectation. It is possible to make meaningful statements about the
fluctuations of suprema of empirical processes without understanding much of their expec-
ted value. The concentration inequalities discussed in this book prove to be useful tools, as
illustrated in this and the following chapter. Interestingly, concentration inequalities even
prove helpful in investigating the behavior of the expected value EZ. This is explored in
Chapter 13.

We have already encountered suprema of some special empirical processes. The first
example we discussed were Rademacher averages (see Section 3.2). Indeed, let (αi,s) be
a collection of real numbers indexed by i = 1, . . . , n and s ∈ T and let ε1, . . . , εn be inde-
pendent Rademacher variables (that is, P{εi = –1} = P{εi = 1} = 1/2). Then Xi,s = αi,sεi,
and

Z = sup
s∈T

n∑
i=1

Xi,s = sup
s∈T

n∑
i=1

αi,sεi

is the Rademacher average already mentioned in Chapter 3.
Another important example of a supremum of an empirical process is the norm of a

sum of random vectors. To see the connection, consider first the �p norm of a vector
y = (y1, . . . , yd)∈Rd defined as ‖y‖p = (∑d

i=1 |yi|
p)1/p where p∈ (1,∞). Let q = p/(p – 1)

be the conjugate of p. The spaceRd with the �q norm is called the dual space ofRd endowed
with �p. Now let T = {α : α ∈ Qd, ‖α‖q ≤ 1} be the countable set of vectors in Rd with
rational coordinates whose �q norm is at most 1. Then each α in T defines the linear func-
tional onRd byα(y) =

∑d
i=1 yiαi. Then supα∈T α(y) = ‖y‖p and therefore if Y1, . . . , Yn are

independent random vectors taking values inRd, then

Z =

∥∥∥∥∥
n∑
i=1

Yi

∥∥∥∥∥
p

= sup
α∈T

n∑
i=1

d∑
s=1

Yi,sαs

is the supremumof an empirical process. Indeed, the same argument applies not only for the
�p norm but also in any separable Banach space B with norm ‖ · ‖B. If T denotes a dense
countable subset of the unit ball of the dualB′ ofB, then

‖y‖B = sup
α∈T

α(y).

Defining the random variable Xi,α = α(Yi), the supremum of the empirical process indexed
by T is ∥∥∥∥∥

n∑
i=1

Yi

∥∥∥∥∥
B

= sup
α∈T

n∑
i=1

α(Yi) = sup
α∈T

n∑
i=1

Xi,α .
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We have already considered some examples of concentration inequalities for norms of
sums of independent random vectors. Norms of Gaussian random vectors are discussed
in Section 5.4 and the Bonami–Beckner inequalities of Section 5.8 translate into concentra-
tion inequalities for suprema of Rademacher processes.Note also that the largest eigenvalue
of a random symmetric matrix discussed in Examples 3.14 and 6.8 also fits within this
framework.

Often the indices s ∈ T may be associated with measurable functions fs :
X → R, s ∈ T defined on some set X . If Y1, . . . , Yn are independent random vari-
ables taking values in X , then by defining Xi,s = fs(Yi), the supremum of the empirical
process equals

sup
s∈T

n∑
i=1

Xi,s = sup
s∈T

n∑
i=1

fs(Yi).

Inmost applications of empirical processes appearing in statistics andmachine learning, this
is the most frequent notation. A classical example is the Kolmogorov–Smirnov statistics.
The Yi’s are assumed to be independently and uniformly distributed over [0, 1] and for
each rational s ∈ [0, 1], a function fs is defined by fs(x) = 1{x≤s} – s. Then the (one-sided)
Kolmogorov–Smirnov statistics is the supremum

sup
s∈[0,1]

n∑
i=1

(1{Yi≤s} – s) = sup
s∈[0,1]∩Q

n∑
i=1

(1{Yi≤s} – s).

This chapter is mostly devoted to upper bounding the variance of suprema of empirical
processes, but we also mention upper bounds for the second moment EZ2. Our main tool
is, once again, the Efron–Stein inequality. Various estimates of the variance are derived and
the bounds often involve one of the following three quantities:

V =
n∑
i=1

E sup
s∈T

X2
i,s

�2 = E sup
s∈T

n∑
i=1

X2
i,s

σ 2 = sup
s∈T

n∑
i=1

EX2
i,s.

Clearly, σ 2 ≤ �2 ≤ V . Given the lack of a standard terminology, we will refer to V , �2,
and σ 2 as the strong variance, weak variance, and wimpy variance, respectively. In general,
there may be significant gaps between any two of these quantities. A notable difference is
the case of Rademacher averages when σ 2 = �2.

In this and the next two chapters, results are stated and proved for empirical pro-
cesses indexed by finite or countable sets. These results can often be easily extended to
suprema of empirical processes indexed by uncountable sets. The empirical process is said
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to be separable if there exists a countable subset S ⊂ T such that, almost surely, for all
i = 1, . . . , n and for all t ∈ T , there exists a sequence {tn} of elements of S such that Xi,tn
converges toXi,t , that is,T contains a dense countable subsetS with respect to the topology
of pointwise convergence. The subset S is sometimes called the separant.

If T admits a countable separant S , then

Z = sup
t∈T

n∑
i=1

Xi,t = sup
s∈S

n∑
i=1

Xi,s almost surely.

This shows that the supremum of a separable empirical process is measurable. Let
Y = sups∈S

∑n
i=1 Xi,s be the supremum of the empirical process indexed by the countable

separant. Note that Y is the monotone limit of maxima computed over finite sets. One
can easily check that Var (Z) = Var (Y), whether the quantities are finite or not. Moreover,
almost surely, we also have

sup
t∈T

n∑
i=1

X2
i,t = sup

s∈S

n∑
i=1

X2
i,s.

All results stated in this and the next two chapters for suprema of empirical processes
indexed by finite of countable sets extend to suprema of separable processes.

In Section 11.1 we begin by showing how the Efron–Stein inequality implies that
Var (Z) ≤ V and Var (Z) ≤ �2 + σ 2. A natural question is then whether Var (Z) ≤ σ 2.
However, this is easily shown to be false by a counter-example (see Exercise 11.1).

In Section 11.2 we proceed with a discussion of Nemirovski’s inequality. Nemirovski’s
original inequality relates EZ2 to V . We argue that it makes sense to bound EZ2 in terms
of�2 and that this may significantly improve the original inequality. We point out that the
difference between the weak and strong variances can be quite substantial.

Even though σ 2 may be smaller than Var (Z), �2 (and therefore also Var (Z)) can be
upper bounded by a linear combination of EZ and σ 2. This result follows from some basic
symmetrization and contraction inequalities from empirical process theory presented in
Section 11.3. The connexion between wimpy and weak variances �2 ≤ 2EZ + σ 2 can be
established in a simple way for centered empirical processes uniformly bounded by 1 and
with identically distributed summands (see Theorem 11.10).

Connecting the wimpy and weak variances without the uniform boundedness assump-
tion requires more effort, namely an appropriate truncation argument. This is the subject of
the Hoffmann–Jørgensen inequalities described in Section 11.5.

11.1 General Upper Bounds for the Variance

In Section 3.2 we saw how the Efron–Stein inequality allows one to derive sharp
upper bounds for the variance of Rademacher averages. Here we show that they prove
equally useful when dealing with suprema of general empirical processes. The following
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proposition describes easy and general upper bounds for the variance. Despite their
simplicity, these bounds can be sharp, for example when the index set T contains only one
element.

Theorem 11.1 Let Z = sups∈T
∑n

i=1 Xi,s be the supremum of an empirical process as defined
above. Then

Var (Z) ≤ V .

If EXi,s = 0 for all i = 1, . . . , n and for all s ∈ T , then

Var (Z) ≤ �2 + σ 2.

Proof To prove the first inequality, introduce Zi = sups∈T
∑

j:j�=i Xj,s. Let ŝ ∈ T be such
that Z =

∑n
i=1 Xi,̂s and let ŝi be such that Zi =

∑
j�=i Xj,̂si . (We implicitly assume here

that the suprema in the definition of Z and Zi are achieved. This is not necessarily
the case if T is not a finite set. In that case one can define ŝ and ŝi as appropriate
approximate minimizers and the argument carries over.) Then

(Z – Zi)+ ≤ (Xi,̂s)+ ≤ sup
s∈T

|Xi,s|

and

(Z – Zi)– ≤ (Xi,̂si)– ≤ sup
s∈T

|Xi,s|,

so

n∑
i=1

(Z – Zi)2 ≤
n∑
i=1

sup
s∈T

X2
i,s.

The first inequality follows from Efron–Stein inequality.
To prove the second, for each i = 1, . . . , n, let Z′

i = sups∈T
(∑

j�=i Xj,s + X′
i,s

)
where

X′
i is an independent copy of Xi. Note that

(Z – Z′
i)
2
+ ≤

(
Xi,̂s – X′

i,̂s
)2.

Denoting byE′ the expectation with respect to the random variablesX′
1, . . . ,X

′
n, by the

Efron–Stein inequality,
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Var (Z) ≤ E
n∑
i=1

(Z – Z′
i)
2
+

≤ E
n∑
i=1

E′
[(
Xi, ŝ – X′

i, ŝ
)2]

≤ E
n∑
i=1

(
X2
i, ŝ + E′

[
X′2
i, ŝ
])

(
as X′

i, ŝ is independent of ŝ and E
′X′

i, ŝ = 0
)

≤ E sup
s∈T

n∑
i=1

X2
i,s + sup

s∈T

n∑
i=1

EX2
i,s. �

Note that Theorem 11.1 still holds if the process is assumed to be separable (see
Exercise 11.3).

11.2 Nemirovski’s Inequality

Next we show how the upper bounds for the variance described in the previous section can
be used to obtain bounds for EZ2 where Z is the norm of a sum of independent vector-
valued random variables. Let X1, . . . ,Xn be independent random variables with values in a
complete separable normed spaceB satisfying EXi = 0 and let

Sn =
n∑
i=1

Xi.

In this section, we assume that allE
[‖Xi‖2B

]
are finite. Our purpose is to relate E

[‖Sn‖2B] to
the values E

[‖Xi‖2B
]
, i = 1, . . . , n. The original question raised byNemirovski was whether

there exists a constant κ = κ(B) such that

E
[‖Sn‖2B] ≤ κ(B)

n∑
i=1

E
[‖Xi‖2B

]
.

If the normed space B is a Euclidean space (or more generally a Hilbert space), then
E
[‖Sn‖2B] =∑n

i=1 E
[‖Xi‖2B

]
and we may take κ(B) = 1. When considering other norms,

this simple connection breaks down. If B is finite-dimensional (e.g. B = Rd endowed
with the �p norm with p ∈ [1,∞]), then κ(B) ≤ dim(B) (see Section 13.5 and the
bibliographical remarks for references). However, in some interesting cases, much bet-
ter bounds are possible. In this section, we focus on Rd equipped with the �∞ norm
‖y‖∞ = maxi=1,...,d |yi|. In Section 13.4, we point out that the results presented here extend
to Gaussian and Rademacher sums of symmetric matrices equipped with an operator
norm. In Section 13.5, we discuss the case ofRd under the �p norm for 1 ≤ p < ∞.
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Theorem 11.2 Let X1, . . . ,Xn be independent random variables taking their values in
Rd such that they are symmetric (i.e. –Xi has the same distribution as Xi). Let
Sn =

∑n
i=1 Xi. If�2 = Emaxj=1,...,d

∑n
i=1 X

2
i,j , define

C(n, d) = sup
E ‖Sn‖2∞

�2 ,

where the supremum is taken over all distributions of independent, Rd-valued symmetric
random variables X1, . . . ,Xn with finite�2.
Then, C(n, d) is a non-decreasing function of both d and n, and

C(n, d) ≤ 2(1 + log(2d)).

Moreover, letting C(∞, d) = limn→∞ C(n, d), we have, for d ≥ 2,

C(∞, d) ≥
(

�–1
(
1 –

1
2(d + 1)

))2

and

lim
d→∞

C(∞, d)
2 log(d)

= 1.

The proof of Theorem 11.2, uses the next technical lemma.

Lemma 11.3 Let X1, . . . ,Xn be independent standard Gaussian random variables. Let �

denote the distribution function of the standard Gaussian distribution. Then

�–1 (1 – 1/(2(n + 1))) ≤ E max
i=1,...,n

|Xi| ≤
√
2 log(2n)

and

E max
i=1,...,n

X2
i ≤ 1 + 2 log(2n).

Moreover,

lim
n→∞

Emaxi=1,...,n |Xi|√
2 log n

= lim
n→∞

Emaxi=1,...,n X2
i

2 log n
= 1.

Proof As

E max
i=1,...,n

|Xi| = E max
i=1,...,n

max(–Xi,Xi),

Theorem 2.5 implies that Emaxi=1,...,n |Xi| ≤
√
2 log(2n). The random variable

maxi=1,...,n |Xi| is distributed like �–1 ((1 + max(U1, . . . ,Un))/2), where U1, . . . ,Un
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are independent uniformly distributed over [0, 1]. By convexity of �–1 over [1/2, 1),
Jensen’s inequality implies

E max
i=1,...,n

|Xi| ≥ �–1
(
1 + Emax(U1, . . . ,Un)

2

)
= �–1

(
1 –

1
2(n + 1)

)
.

By the Gaussian Poincaré inequality (Theorem 3.20), as the maximum of the absolute
values is a 1-Lipschitz function,

E max
i=1,...,n

X2
i ≤ 1 +

(
E max

i=1,...,n
|Xi|

)2

.

The last statement follows from the fact that limt→∞ �–1(1 – 1/t)/
√
2 log t = 1

(see Exercise 11.7). �

Proof Throughout this proof‖ · ‖ stands for‖ · ‖∞. The fact thatC(n, d) is non-decreasing
in both n and d is obvious from the definition.

By definition of the variance,

E
[‖Sn‖2] = Var (‖Sn‖) + (E‖Sn‖)2.

Since

‖Sn‖ = max
j=1,...,d
b∈{–1,1}

n∑
i=1

b Xi,j,

we may write ‖Sn‖ as the supremum of an empirical process with a finite index set. By
Theorem 11.1,

Var (‖Sn‖) ≤ 2�2.

As the random variables Xi are assumed to be symmetric, (X1, . . . ,Xn) is distributed
as ε1X1, . . . , εnXn where the εi are independent Rademacher variables. Then

E ‖Sn‖ = E max
j=1,...,d

∣∣∣∣∣
n∑
i=1

εiXi,j

∣∣∣∣∣ ,
and fixing the variables Xi’s and bounding the expectation with respect to the εi, it
follows from Theorem 2.5 that

E

[
max
j=1,...,d

∣∣∣∣∣
n∑
i=1

εiXi,j

∣∣∣∣∣ | X1, . . . ,Xn

]
≤
√√√√2 log (2d) max

j=1,...,d

n∑
i=1

X2
i,j.
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Taking expectation on both sides of this inequality and using Jensen’s inequality to
bring the expectation under the square root sign, we obtain

E‖Sn‖ = E max
j=1,...,d

∣∣∣∣∣
n∑
i=1

εiXi,j

∣∣∣∣∣ ≤
√√√√2 log (2d)E max

j=1,...,d

n∑
i=1

X2
i,j.

Combining this inequality with the boundVar (‖Sn‖) ≤ 2�2 and the definition of the
variance, we finally get

E ‖Sn‖2 ≤ 2(1 + log(2d))�2.

This proves that C(n, d) ≤ 2 (1 + log (2d)) for all n and d.
Let χ2

d denote the chi-square distribution with d degrees of freedom. (This is the
distribution of the sum of the squares of d independent standard Gaussian random
variables.)

The lower bound for C(∞, d) follows simply by considering the case when
each Xi is a d-dimensional standard Gaussian vector. Then for each j = 1, . . . , d,
(1/n)(

∑n
i=1 Xi,j)2 is distributed according to χ2

1 . Hence ‖Sn‖/√n is distributed as the
maximumof the absolute values of d independent standardGaussian randomvariables.
By Jensen’s inequality, Lemma 11.3 implies

E‖Sn‖2
n

≥
(

�–1
(
1 –

1
2(d + 1)

))2

.

On the other hand, �2 is the expected value of the maximum of d independent
χ2
n -distributed random variables. By Theorem 2.7, we have

�2 ≤ n + 2
√
n log d + 2 log d.

Putting these two bounds together,

C(n, d) ≥
(
�–1

(
1 – 1

2(d+1)

))2
1 + 2

√
log d/n + 2 log d/n

.

The last statement follows from the fact that limt→∞ �–1(1 – 1/t)/
√
2 log t = 1. �

In the rest of this section we compare the strong and weak variances

V =
n∑
i=1

E max
j=1,...,d

X2
i,j and �2 = E max

j=1,...,d

n∑
i=1

X2
i,j.
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Since

�2 ≥ E max
i=1,...,n

max
j=1,...,d

X2
i,j,

we clearly have

�2 ≤ V ≤ n�2.

On the other hand,

V ≤ E
d∑
j=1

n∑
i=1

X2
i,j ≤ d�2,

and therefore

�2 ≤ V ≤ min(n, d)�2.

Next we illustrate in two different examples that the ratio V/�2 can indeed be of the order
of min(n, d).

Consider first the case when Xi,j = εiai,j where ε1, . . . , εn are i.i.d. Rademacher random
variables. Then

�2 = max
j=1,...,d

n∑
i=1

a2i,j while V =
n∑
i=1

max
j=1,...,d

a2i,j.

Choosing aj,j = 1 for every j ≤ min(n, d) and ai,j = 0 otherwise, we see that �2 = 1 while
V = min(n, d). This shows that the ratio V/�2 can indeed achieve the maximal possible
value min(n, d).

It is even more interesting to notice that the ratio V/�2 can be large even when the
variables Xi,j are i.i.d. standard normal random variables. In this case

E ‖Sn‖2∞ = V = nE max
j=1,...,d

Y2
j

where Y1, . . . , Yd are independent standard normal random variables. On the other hand,
as we have seen in the proof of Theorem 11.2,

�2 ≤ n + 2
(√

n log d + log d
)
.

Since�2 ≥ n, we obtain

Emaxj=1,...,d Y2
j

1 + 2
√
(log d)/n + 2 (log d) /n

≤ V
�2 ≤ E max

j=1,...,d
Y2
j .
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To interpret this bound, we distinguish three different asymptotic regimes of dependence
of d = dn on n as n → ∞.

Case 1. Assume first limn→∞(log dn)/n = 0. By Lemma 11.3, we haveV/�2 ∼ 2 log (dn)
as n → ∞. Since the convergence of (log dn) /n to 0 can be arbitrarily slow, the ratioV/�2

is close to its maximal value n.

Case 2. If limn→∞(log dn)/n = α for some α > 0, then V/�2 is of the order of n in the
sense that

lim inf
n→∞

V
n�2 ≥ 2α

1 +
√
2α + 2α

.

Case 3. Finally, if limn→∞(log dn)/n = ∞, then limn→∞ V/(n�2) = 1.

11.3 The Symmetrization and Contraction Principles

The bound Var (Z) ≤ �2 + σ 2 of Theorem 11.1 shows that by understanding�2, one has
a good grasp on the size of the random fluctuations of the supremum of the empirical pro-
cess. However, often the wimpy variance σ 2 is easier to interpret than �2. Luckily, if an
upper bound for sups∈T |Xi,s| is available, σ 2 and �2 may be related by a simple inequality
which we present next. This inequality is based on symmetrization inequalities and con-
traction principles, which are useful and frequently used tools in the theory of empirical
processes. We start with a simple symmetrization inequality.

Lemma 11.4 (SYMMETRIZATION INEQUALITIES) Let X1, . . . ,Xn be independent ran-
dom vectors where Xi = (Xi,s)s∈T . Assume that the process is centered, that is, for each
i = 1, . . . , n and s ∈ T , EXi,s = 0. Let ε1, . . . , εn be a sequence of independent
Rademacher variables independent of X1, . . . ,Xn. Then

1
2
E sup

s∈T

∣∣∣∣∣
n∑
i=1

εiXi,s

∣∣∣∣∣ ≤ E sup
s∈T

∣∣∣∣∣
n∑
i=1

Xi,s

∣∣∣∣∣ ≤ 2E sup
s∈T

∣∣∣∣∣
n∑
i=1

εiXi,s

∣∣∣∣∣
and

E sup
s∈T

n∑
i=1

Xi,s ≤ 2E sup
s∈T

n∑
i=1

εiXi,s.

Proof We start with the second inequality. The proof of the last inequality is similar. Let
X′
1, . . . ,X

′
n be distributed as X1, . . . ,Xn but independent of them. This means that the

random vectorsXi – X′
i are independent and symmetric, distributed as the εi(Xi – X′

i ).
Thus,
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E sup
s∈T

∣∣∣∣∣
n∑
i=1

Xi,s

∣∣∣∣∣ = E sup
s∈T

∣∣∣∣∣
n∑
i=1

(
Xi,s – EX′

i,s
)∣∣∣∣∣

≤ E sup
s∈T

∣∣∣∣∣
n∑
i=1

(
Xi,s – X′

i,s
)∣∣∣∣∣ (by Jensen’s inequality)

= E sup
s∈T

∣∣∣∣∣
n∑
i=1

εi
(
Xi,s – X′

i,s
)∣∣∣∣∣

≤ 2E sup
s∈T

∣∣∣∣∣
n∑
i=1

εiXi,s

∣∣∣∣∣ .
The first inequality follows by a similar argument:

1
2
E sup

s∈T

∣∣∣∣∣
n∑
i=1

εiXi,s

∣∣∣∣∣ = 1
2
E sup

s∈T

∣∣∣∣∣
n∑
i=1

εi(Xi,s – EX′
i,s)

∣∣∣∣∣
≤ 1

2
E sup

s∈T

∣∣∣∣∣
n∑
i=1

εi(Xi,s – X′
i,s)

∣∣∣∣∣ (by Jensen’s inequality)

=
1
2
E sup

s∈T

∣∣∣∣∣
n∑
i=1

(Xi,s – X′
i,s)

∣∣∣∣∣
≤ E sup

s∈T

∣∣∣∣∣
n∑
i=1

Xi,s

∣∣∣∣∣ . �

Symmetrization inequalities motivate the use of conditional Rademacher averages in
empirical process theory. The conditional Rademacher average associated with the empir-
ical process

∑n
i=1 Xi is the conditional expectation of the supremum of the symmetrized

empirical process
∑n

i=1 εiXi, given X1, . . . ,Xn, defined as

E

[
sup
s∈T

n∑
i=1

εiXi,s

∣∣∣∣X1, . . . ,Xn

]
.

We have already encountered conditional Rademacher averages in Section 3.3 where we
showed that if sups∈T ,i≤n |Xi,s| ≤ 1 almost surely, then the conditional Rademacher average
is a self-bounding function. This implies that conditional Rademacher averages are relat-
ively stable (their variance is not larger than their expected value) and have sub-Poissonian
tails (see Section 6.7). Lemma 11.4 complements this observation. It shows that, up to
a constant factor, conditional Rademacher averages estimate the expected value of the
supremum of the underlying empirical process.
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Another simple and useful tool in empirical process theory is the so-called contraction
principle. We start by an easy version followed by a more general formulation.

Theorem 11.5 Let x1, . . . , xn be vectors whose real-valued components are indexed by T ,
that is, xi = (xi,s)s∈T . Let αi ∈ [0, 1] for i = 1, . . . , n. Let ε1, . . . , εn be independent
Rademacher random variables. Then

E sup
s∈T

n∑
i=1

εiαixi,s ≤ E sup
s∈T

n∑
i=1

εixi,s.

Proof Let� : (RT )n → R be defined by

�(x1, . . . , xn) = E sup
s∈T

n∑
i=1

εixi,s.

The function� is convex since it is a linear combination of suprema of linear functions.
It is also invariant under sign change in the sense that for all (η1, . . . , ηn) ∈ {–1, 1}n,

�(x1, . . . , xn) = �(η1x1, . . . , ηnxn).

Fix (x1, . . . , xn) ∈ (RT )n. Consider the restriction of � to the convex hull
of the 2n points of the form (η1x1, . . . , ηnxn), with (η1, . . . , ηn) ∈ {–1, 1}n.
The supremum of � is achieved at one of the vertices (η1x1, . . . , ηnxn). The
sequence of vectors (αixi, . . . ,αnxn) lies inside the convex hull of (η1x1, . . . , ηnxn),
(η1, . . . , ηn) ∈ {–1, 1}n and therefore

E sup
s∈T

n∑
i=1

εiαixi,s = �(α1x1, . . . ,αnxn)

≤ �(x1, . . . , xn)

= E sup
s∈T

n∑
i=1

εixi,s. �

The next theorem generalizes Theorem 11.5. It serves not only for comparing expecta-
tions but also higher moments, moment-generating functions, and tail probabilities.

Theorem 11.6 (CONTRACTION PRINCIPLE) Let x1, . . . , xn be vectors whose real-valued
components are indexed by T , that is, xi = (xi,s)s∈T . For each i = 1, . . . , n letϕi : R → R

be a Lipschitz function such that ϕi(0) = 0. Let ε1, . . . , εn be independent Rademacher
random variables, and let� : [0,∞) → R be a non-decreasing convex function. Then

E

[
�

(
sup
s∈T

n∑
i=1

εiϕi(xi,s)

)]
≤ E

[
�

(
sup
s∈T

n∑
i=1

εixi,s

)]
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and

E

[
�

(
1
2
sup
s∈T

∣∣∣∣∣
n∑
i=1

εiϕi(xi,s)

∣∣∣∣∣
)]

≤ E

[
�

(
sup
s∈T

∣∣∣∣∣
n∑
i=1

εixi,s

∣∣∣∣∣
)]

.

The proof is based on the following technical lemma.

Lemma 11.7 Let� : R → R denote a convex nondecreasing function. Let ϕ : R → R be a
1-Lipschitz function such that ϕ(0) = 0. Let T ⊂ R2. Then

�

(
sup
s∈T

(s1 + ϕ(s2))
)
+ �

(
sup
s∈T

(s1 – ϕ(s2))
)

≤ �

(
sup
s∈T

(s1 + s2)
)
+ �

(
sup
s∈T

(s1 – s2)
)
.

Proof Since� is convex and nondecreasing, if a, b, c, d are such that 0 ≤ d – c ≤ b – a and
c ≤ a, then

�(d) – �(c) ≤ �(b) – �(a). (11.1)

Denote by ŝ = ( ŝ1, ŝ2) and t̂ = ( t̂1, t̂2) the elements of T that achieve the suprema on
the left-hand side. It suffices to show that

� ( ŝ1 + ϕ( ŝ2)) + � ( t̂1 – ϕ( t̂2)) ≤ � ( ŝ1 + ŝ2) + � ( t̂1 – t̂2) ,

or, equivalently,

� ( t̂1 – ϕ( t̂2)) – � ( t̂1 – t̂2) ≤ � ( ŝ1 + ŝ2) – � ( ŝ1 + ϕ( ŝ2)).

As� is nondecreasing we have both

ŝ1 + ϕ( ŝ2) ≥ t̂1 + ϕ( t̂2)

and

ŝ1 – ϕ( ŝ2) ≤ t̂1 – ϕ( t̂2),

which implies

ϕ( t̂2) – ϕ( ŝ2) ≤ ŝ1 – t̂1 ≤ ϕ( ŝ2) – ϕ( t̂2),
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and therefore

| ŝ1 – t̂1| ≤ ϕ( ŝ2) – ϕ( t̂2) ≤ | ŝ2 – t̂2|,

where the last inequality follows from the fact that ϕ is 1-Lipschitz.
First consider the case when ŝ2 and t̂2 are both positive. We may assume that

ŝ2 ≥ t̂2 ≥ 0 because otherwise we may exchange the roles of ŝ and t̂ and change
the sign of ϕ. This implies that ŝ2 – ϕ( ŝ2) ≥ t̂2 – ϕ( t̂2) ≥ 0. Moreover, as
ŝ1 + ϕ( ŝ2) ≥ t̂1 + ϕ( t̂2) ≥ t̂1 – t̂2, (11.1) allows us to conclude.

Consider now the case where ŝ2 and t̂2 are both negative. Similarly to the pre-
vious case, we may assume that t̂2 ≤ ŝ2 ≤ 0. Now we have 0 ≤ ϕ( ŝ2) – ŝ2 ≤
ϕ( t̂2) – t̂2 and ŝ1 + ŝ2 ≤ ŝ1 – ϕ( ŝ2) ≤ t̂1 – ϕ( t̂2). Once again, (11.1) allows us to
conclude.

To end the proof, consider the situation when t̂2 ≤ 0 ≤ ŝ2. Then� ( t̂1 – ϕ( t̂2)) –
� ( t̂1 – t̂2) ≤ 0 and 0 ≤ � ( ŝ1 + ŝ2) – � ( ŝ1 + ϕ( ŝ2)) as –t̂2 ≤ –ϕ(t̂2) and
ϕ( ŝ2) ≤ ŝ2. This is enough to conclude. The last case can be handled by changing the
sign of ϕ and permuting ŝ and t̂. �

Proof of Theorem 11.6. We begin by proving the first inequality. It suffices to prove that,
if T ⊂ Rn is a finite set of vectors s = (s1, . . . , sn), then

E

[
�

(
sup
s∈T

n∑
i=1

εiϕi(si)

)]
≤ E

[
�

(
sup
s∈T

n∑
i=1

εisi

)]
.

The key step is that for an arbitrary function A : T → R,

E

[
�

(
sup
s∈T

A(s) +
n∑
i=1

εiϕi(si)

)]
≤ E

[
�

(
sup
s∈T

A(s) +
n∑
i=1

εisi

)]
. (11.2)

The base case n = 1 is handled by Lemma 11.7. In this case (11.2) is equivalent to

E
[
�

(
sup
u∈U

(u1 + εϕ(u2))
)]

≤ E
[
�

(
sup
u∈U

(u1 + εu2)
)]

,

where U =
{
(A(s), s) : s ∈ T

}
.
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The proof of (11.2) goes by induction on n:

E

[
�

(
sup
s∈T

A(s) +
n∑
i=1

εiϕi(si)

)]

= E

[
E

[
�

(
sup
s∈T

A(s) +
n–1∑
i=1

εiϕi(si) + εnϕn(sn)

) ∣∣∣∣ε1, . . . , εn–1
]]

≤ E

[
E

[
�

(
sup
s∈T

A(s) + εnsn +
n–1∑
i=1

εiϕi(si)

) ∣∣∣∣ε1, . . . , εn–1
]]

= E

[
E

[
�

(
sup
s∈T

A(s) + εnsn +
n–1∑
i=1

εiϕi(si)

) ∣∣∣∣εn
]]

≤ E

[
E

[
�

(
sup
s∈T

A(s) + εnsn +
n–1∑
i=1

εisi

) ∣∣∣∣εn
]]

= E

[
�

(
sup
s∈T

A(s) + εnsn +
n–1∑
i=1

εisi

)]

where the first inequality follows from the base case, and the second by assuming that
(11.2) holds for n – 1 Rademacher variables.

We turn to the proof of the second inequality in the theorem. By Jensen’s inequality,

E

[
�

(
1
2
sup
s∈T

∣∣∣∣∣
n∑
i=1

εiϕi(si)

∣∣∣∣∣
)]

= E

[
�

(
1
2
sup
s∈T

(
n∑
i=1

εiϕi(si)

)
+

+
1
2
sup
s∈T

(
n∑
i=1

–εiϕi(si)

)
+

)]

≤ 1
2
E

[
�

(
sup
s∈T

(
n∑
i=1

εiϕi(si)

)
+

)]
+
1
2
E

[
�

(
sup
s∈T

(
n∑
i=1

–εiϕi(si)

)
+

)]
.

The second inequality in the theoremnow follows by invoking twice the first inequality
and noting that the function�((x)+) is convex and nondecreasing. �

11.4 Weak andWimpy Variances

In this section, we bound the weak variance �2 by its wimpy counterpart for empirical
processes with uniformly bounded random summands. More precisely, we show how sym-
metrization (Lemma 11.4) and contraction (Theorem 11.6) allow us to upper bound �2

using EZ and σ 2.
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Theorem 11.8 Define Z = sups∈T
∑n

i=1 Xi,s where EXi,s = 0 and |Xi,s| ≤ 1 for all
i = 1, . . . , n and s ∈ T . Then

Var (Z) ≤ �2 + σ 2 ≤ 8EZ + 2σ 2.

The key to the proof of Theorem 11.8 is the following simple lemma.

Lemma 11.9 Under the conditions of Theorem 11.8,

�2 ≤ σ 2 + 2E sup
s∈T

n∑
i=1

εiX2
i,s,

where ε1, . . . , εn are independent Rademacher variables,

Proof Clearly,

�2 = E sup
s∈T

n∑
i=1

((
X2
i,s – EX

2
i,s
)
+ EX2

i,s
)

≤ E sup
s∈T

n∑
i=1

(
X2
i,s – EX

2
i,s
)
+ σ 2.

On the other hand, by Lemma 11.4,

E sup
s∈T

n∑
i=1

(
X2
i,s – EX

2
i,s
) ≤ 2E sup

s∈T

n∑
i=1

εiX2
i,s. �

Proof of Theorem 11.8. By Theorem 11.1, it suffices to prove that �2 ≤ 8EZ + σ 2.
But by Lemma 11.9, this amounts to showing that 2E sups∈T

∑n
i=1 εiX2

i,s ≤ 4EZ. As
ϕ(x) = x2 is 2-Lipschitz on [–1, 1], by Theorem 11.6,

E sup
s∈T

n∑
i=1

εiX2
i,s ≤ 2E sup

s∈T

n∑
i=1

εiXi,s.

Finally, as each Xi,s is centered, by the symmetrization inequalities,

E sup
s∈T

n∑
i=1

εiX2
i,s ≤ 4E sup

s∈T

n∑
i=1

Xi,s. �

When the random vectors Xi are identically distributed and uniformly bounded, the
bound of Theorem 11.8 can be improved as is shown next.
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Theorem 11.10 Let Z = sups∈T
∑n

i=1 Xi,s be the supremum of an empirical process such that
X1, . . . ,Xn are independent and identically distributed and for all i = 1, . . . , n and s ∈ T ,
|Xi,s| ≤ 1 with probability 1 and EXi,s = 0. Then

Var (Z) ≤ 2EZ + σ 2.

We prove that even if we do not assume that the summands are identically distributed,

Var (Z) ≤ 2EZ +
n∑
i=1

sup
s∈T

EX2
i,s.

Of course, if the random vectorsXi are identically distributed, the second expression on the
right-hand side equals σ 2.

The theorem follows from careful usage of the Efron–Stein inequality. The key observa-
tion is that the supremumof the empirical process satisfies a certain self-bounding property.
Recall that various versions of self-bounding functions are investigated in Chapters 3 and 6.
Here we need a slightly different notion. In order to show the essence of the argument, we
generalize the statement to such self-bounding random variables. To this end, consider a
random variable Z that is a function of independent random variables X1, . . . ,Xn for which
the following assumptions hold: for every i = 1, . . . , n, there exists a measurable functionZi
of X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn) and a random variable Yi such that for some constant
a ∈ [0, 1] ,

Yi ≤ Z – Zi ≤ 1, E(i)Yi ≥ 0, and Yi ≤ a, (11.3)

where E(i) denotes the conditional expectation given X(i), and

n∑
i=1

(Z – Zi) ≤ Z. (11.4)

Note that if these assumptions are satisfied, then Zi ≤ E(i)Z as E(i)Z – Zi = E(i)[Z – Zi] ≥
E(i)Yi ≥ 0. Also observe that if Yi ≡ 0, then the condition simplifies to the self-bounding
property introduced in Chapter 3.

Lemma 11.11 Let Z be a real-valued function of the independent random variables X1, . . . ,Xn
satisfying assumptions (11.3) and (11.4). Then for every i = 1, . . . , n,

E(i)(Z – E(i)Z
)2 ≤ E(i) (Z – Zi)

2 ≤ (1 + a)E(i) [Z – Zi] + E(i)Y2
i .

Proof The first inequality is obvious. To prove the second, set ϕ (x) = x2 – (1 + a) x.
Then, since (Z – Zi) – Yi ≥ 0 and ((Z – Zi) – 1) + (Yi – a) ≤ 0, we have

ϕ (Z – Zi) – ϕ (Yi) = [(Z – Zi) – Yi] [((Z – Zi) – 1) + (Yi – a)] ≤ 0.

Hence,

E(i)ϕ (Z – Zi) ≤ E(i)ϕ (Yi) ,
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and therefore

E(i) (Z – Zi)
2 ≤ (1 + a)E(i) [Z – Zi] + E(i)Y2

i – (1 + a)E(i)Yi

which leads to the desired result thanks to the assumption E(i)Yi ≥ 0. �

Proof of Theorem 11.10. The assumptions of Lemma 11.11 are satisfied by suprema of
centered empirical processes with sups∈T |Xi,s| upper bounded by 1 if we choose a = 1.
Indeed, let ŝ denote an element of T that achieves the supremum in the definition of
Z. For each i = 1, . . . , n, let Zi = sups∈T

∑
j�=i Xj,s. Let ŝi denote an element of T that

achieves the supremum in Zi. Then

Xi, ŝi =
n∑
j=1

Xj, ŝi –
∑
j�=i

Xj, ŝi ≤ Z – Zi ≤
n∑
j=1

Xj, ŝ –
∑
j�=i

Xj, ŝ = Xi, ŝ.

Summing over i in the inequalities on the right-hand side, we get the self-bounding
condition

n∑
i=1

(Z – Zi) ≤ Z.

We assume furthermore that for every i = 1, . . . , n and s ∈ T , EXi,s = 0 and |Xi,s| ≤ 1
almost surely. Then defining Yi by Yi = Xi, ŝi , we get

E(i)Yi = 0 and Yi ≤ 1.

Now Theorem 11.10 follows as an immediate consequence of Lemma 11.11 and the
Efron–Stein inequality (Theorem 3.1). �

11.5 Unbounded Summands

The bounds presented in the previous section are only useful when the random variable
maxi=1,...,n sups∈T |Xi,s| is uniformly bounded. In other cases, one way to bound the vari-
ance of suprema of empirical process proceeds by complementing the contraction principle
with some kind of truncation. A convenient device is the so-called Hoffmann–Jørgensen
inequality. Before describing this device, we establish the following “maximal” inequality.

Lemma 11.12 (LÉVY’S MAXIMAL INEQUALITY) Let X1, . . . ,Xn be independent (not neces-
sarily identically distributed) symmetric random variables where Xi = (Xi,s)s∈T . Define
Sk =

∑
i≤k Xi and Sk,s =

∑k
i=1 Xi,s for k = 1, . . . , n. Let Zk = sups∈T

∣∣Sk,s∣∣. Then, for
t ≥ 0,

P
{
max
k≤n

Zk ≥ t
}
≤ 2P {Zn ≥ t} .
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Proof Let E denote the event {Zn ≥ t} and for each k = 1, . . . , n, let Ak denote the event
{maxj<k Zj < t and Zk ≥ t}. The collection of events Ak forms a partition of the event
{maxk≤n Zk ≥ t}. Note that for each k, the random vectors Sn – Sk and –(Sn – Sk) are
identically distributed and independent of Sk. Observe that

2Zk = sup
s∈T

∣∣Sk,s + (Sn,s – Sk,s) + Sk,s – (Sn,s – Sk,s)
∣∣

≤ sup
s∈T

∣∣Sk,s + (Sn,s – Sk,s)
∣∣ + sup

s∈T

∣∣Sk,s – (Sn,s – Sk,s)∣∣
= Zn + sup

s∈T

∣∣Sk,s – (Sn,s – Sk,s)∣∣.
The two expressions on the right-hand side of the last display are identically distrib-
uted thanks to the symmetry assumption. On Ak, as Zk ≥ t, we have either Zn ≥ t or
sups∈T

∣∣Sk,s – (Sn,s – Sk,s)∣∣ ≥ t. Thus,

2P {Zn ≥ t and Ak}
= P {Zn ≥ t and Ak}

+P
{
sup
s∈T

∣∣Sk,s – (Sn,s – Sk,s)∣∣ ≥ t and Ak

}
≥ P

{(
Zn ≥ t or sup

s∈T

∣∣Sk,s – (Sn,s – Sk,s)∣∣ ≥ t
)

and Ak

}
= P {Ak} .

Summing over all k = 1, . . . , n,

2P {Zn ≥ t} =
n∑
k=1

2P {Zn ≥ t and Ak} ≥
n∑

k=1

P {Ak} = P
{
max
k≤n

Zk ≥ t
}
. �

Thenext lemma is the simplest representative of a family of results known as theHoffmann–
Jørgensen inequalities.

Lemma 11.13 (HOFFMANN–JØRGENSEN INEQUALITY) Let Xi = (Xi,s)s∈T , i = 1, . . . , n
be independent (not necessarily identically distributed) random variables. For k = 1, . . . , n,
let Sk =

∑k
i=1 Xi and Sk,s =

∑k
i=1 Xi,s. Let Zk = sups∈T

∣∣Sk,s∣∣ and M = supi≤n,s∈T |Xi,s|.
Then for all t, u, v > 0,

P
{
max
k≤n

Zk ≥ t + u + v
}

≤ P {M ≥ v} + P
{
max
k≤n

Zk ≥ t
}
P

⎧⎪⎨⎪⎩ sup
1≤j≤k≤n,

s∈T

∣∣Sk,s – Sj,s∣∣ ≥ u

⎫⎪⎬⎪⎭ .
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Proof Let the event Ak be defined by Zj < s for all j < k and Zk ≥ t. The event
E = {maxk≤n Zk ≥ t + u + v} can be partitioned as E = ∪n

k=1E ∩ Ak.
On Ak ∩ E, for some k ≤ m ≤ n, Zm ≥ t + u + v. But

Zm ≤ Zk–1 + sup
s∈T

|Xk,s| + sup
s∈T

|Sm,s – Sk,s|,

so

Ak ∩ E ⊆
(
Ak ∩

{
sup
s∈T

|Xk,s| ≥ v
})

∪
⎛⎝Ak ∩

⎧⎨⎩sup
m≥k,
s∈T

|Sm,s – Sk,s| ≥ u

⎫⎬⎭
⎞⎠

⊆ (Ak ∩ {M ≥ v}) ∪
⎛⎝Ak ∩

⎧⎨⎩sup
m≥k,
s∈T

|Sm,s – Sk,s| ≥ u

⎫⎬⎭
⎞⎠.

As Ak and (Sm – Sk)m≥k are independent,

P {Ak ∩ E} ≤ P {Ak andM ≥ v} + P {Ak}P

⎧⎨⎩sup
m≥k,
s∈T

|Sm,s – Sk,s| ≥ u

⎫⎬⎭
≤ P {Ak andM ≥ v} + P {Ak}P

⎧⎨⎩ sup
0≤j≤m,
s∈T

|Sm,s – Sj,s| ≥ u

⎫⎬⎭ .

Summing over all k leads to the desired result. �

If we assume that the random vectors are symmetrically distributed, combining the
Hoffmann–Jørgensen inequality and Lévy’s maximal inequality, we obtain the following
corollary.

Corollary 11.14 Consider the conditions and notation of Lemma 11.13 and assume that each
Xi,s has a symmetric distribution. Then for all t, v > 0,

P {Zn ≥ 2t + v} ≤ P
{
max
k≤n

Zk ≥ 2t + v
}

≤ P {M ≥ v} + 4 (P {Zn ≥ t})2.

This result may be used to relate the expectation of Zn, the tail probability of Zn and the
expectation ofM as follows.
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Corollary 11.15 Under the conditions of Corollary 11.14, let t > 0 be such that
P{Zn > t} < 1/4. Then

EZn ≤
( √

4t +
√
EM

1 – (4P{Zn > t})1/2

)2

.

Proof Let α,β , γ be positive and such that α + β + γ = 1. Then, by Corollary 11.14,

EZn ≤
∫ ∞

0
P
{
max
k≤n

Zk > x
}
dx

≤
∫ ∞

0
P {M > αx} dx +

∫ ∞

0
4P {Zn > βx}P {Zn > γ x} dx

=
EM
α

+
4
β

∫ ∞

0
P {Zn > x}P

{
Zn >

γ x
β

}
dx

≤ EM
α

+
4t
β

+
4
γ
P {Zn > t}EZn.

Now letting δ =
√
EM +

√
4t +

√
4P {Zn > t}EZn and choosing α =

√
EM/δ,

β =
√
4t/δ and γ =

√
4P {Zn > t}EZn/δ, we obtain

EZn ≤
(√

EM +
√
4t +

√
4P {Zn > t}EZn

)2
. �

Next we relate the expected value of the Rademacher process generated by the large
values of the sups∈T |Xi,s| with the expected value ofM.

Lemma 11.16 Under the conditions of Corollary 11.14, let ε1, . . . , εn denote independent
Rademacher variables. Let λ > 4 and define t0 = λEM. Then

Emax
s∈T

∣∣∣∣ n∑
i=1

εiXi,s1{sups∈T |Xi,s|>t0}

∣∣∣∣ ≤
(

1 + 2
√

λ

1 – 2/
√

λ

)2

EM.

Proof We use Corollary 11.15 with Z = maxs∈T
∣∣∑n

i=1 εiXi,s1{sups∈T |Xi,s|>t0}
∣∣ and

M = maxi≤n,s∈T |Xi,s|. We obtain

EZ ≤
( √

4t0 +
√
E[M]

1 – (4P {Z > t0})1/2

)2

.

The right-hand sidemay be bounded further by observing that, byMarkov’s inequality,

P {Z > t0} ≤ P {M > t0} ≤ EM
t0

=
1
λ
. �
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Even though the statement and derivation of Lemma 11.16 resort to heavy notation
and sophisticated arguments, the statement lends itself to a simple interpretation. Given
the choice of t0, with high probability there is at most one index 1 ≤ i ≤ n such that
Xi,s1{sups∈T |Xi,s|>t0} �= 0. The sum then reduces to a single summand, and thus with high
probability, Z is distributed likeM.

Now that we are prepared to establish a connection between the wimpy and the weak
variances of the supremum of an empirical process, it generalizes Theorem 11.8.

Theorem 11.17 Let Z = sups∈T
∑n

i=1 Xi,s denote the supremum of an empirical pro-
cess. Assume that the random variables Xi are symmetric for i = 1, . . . , n. Let
M = supi=1,...,n,s∈T X2

i,s. Then

�2 ≤ σ 2 + 64
√
EM EZ + 182EM.

Proof Let ε1, . . . , εn denote independent Rademacher random variables, and let t0 = λEM
with λ > 4. By Lemma 11.9, we have

�2 ≤ σ 2 + 2E sup
s∈T

n∑
i=1

εiX2
i,s.

The last expression can be split into two parts:

E sup
s∈T

n∑
i=1

εiX2
i,s ≤ E sup

s∈T

n∑
i=1

εiX2
i,s1{sups∈T X2

i,s≤t0}

+E sup
s∈T

n∑
i=1

εiX2
i,s1{sups∈T X2

i,s>t0}

≤ E sup
s∈T

n∑
i=1

εiX2
i,s1{sups∈T X2

i,s≤t0}

+E sup
s∈T

∣∣∣∣∣
n∑
i=1

εiX2
i,s1{sups∈T X2

i,s>t0}

∣∣∣∣∣ .
The first term on the right-hand side is bounded by 2

√
t0E sups∈T |

∑n
i=1 εiXi,s| thanks

to the contraction principle (Theorem 11.6). The second term may be handled using
Lemma 11.16:

E sup
s∈T

∣∣∣∣∣
n∑
i=1

εiX2
i,s1{sups∈T |X2

i,s|>t0}

∣∣∣∣∣ ≤
(

1 + 2λ1/2

1 – 2/λ1/2

)2

EM.

The proof is completed by taking λ = 16. �

A shallow comparison between Theorem 11.17 and Theorem 11.10 might suggest that the
last lemma is completely satisfactory. Considering a Gaussian setting, where (Xi,j)1≤j≤d is a
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standard Gaussian vector for each i = 1, . . . , n, shows that is not the case. The upper bound
on �2 – σ 2 derived from Theorem 11.17 is approximately

√
4n log(nd) log(d), while a

better upper bound is
√
4n log(d) + 2 log d as �2 – σ 2 is the expected value of the max-

imum of d independent sub-gamma random variables with variance factor 2n and scale
factor 2.

11.6 Bibliographical Remarks

Suprema of empirical processes play a fundamental role in statistics and machine learn-
ing (see, for example, the monographs of van der Vaart and Wellner (1996), van de Geer
(2000), andMassart (2006) for surveys).

Nemirovski’s inequality was first stated in Nemirovski (2000). It has been used in high-
dimensional statistics by Greenshtein and Ritov (2004). Nemirovski showed that ifB isRd

endowed with the �p norm where 2 ≤ p ≤ ∞, then there exists a constant K(p, d) such
that

E‖Sn‖2p ≤ K(p, d)V

where V = E
∑n

i=1 ‖Xi‖2p . Duembgen et al. (2010) re-examined Nemirovski’s results and
established, using a variety of methods from linear analysis, convex geometry, and high-
dimensional probability, that for d ≥ 3,

K(p, d) ≤ min (d, 2e log d, p – 1).

Morover they proved that for p = ∞, lim infd→∞ K(∞, d)/(2 log d) ≥ 1. Note that, for
the example used in the derivation of the lower bound for C(∞, d) in Theorem 11.2, we
had E‖Sn‖2p = V .

Symmetrization techniques were popularized by Paul Lévy. Ledoux and Talagrand
(1991) provide a thorough description of the impact of symmetrization on the analysis of
sums of independent random vectors. In the field of empirical process theory, Lemma 11.4
was advocated by Giné and Zinn (1984). Symmetrization had been used in different ways
byVapnik andChervonenkis (1971, 1974, 1981) in their influential papers (see alsoVapnik
1982,1998) in order to develop deviation inequalities for suprema of empirical processes
(see Exercises 12.1 and 12.3). Symmetrization still plays an important role in empirical
process theory (see Panchenko 2003).

The contraction principle for Rademacher sums (Theorem 11.6) is due to Ledoux
and Talagrand (1991, Chapter 4). Theorem 11.6 is part of a collection of related results
also called contraction principles (see Exercises 11.12, 11.13, and 11.14 for some related
results). Note that while all these exercises can be solved by invoking Theorem 11.6, sim-
pler proofs exist, for example Ledoux and Talagrand (1991, Chapter 4). The proof of
Theorem 11.8 can be found inMassart (2000a).

Theorem 11.10 is described by Rio (2001). Variants can be found in Bousquet (2002b)
(see Exercise 11.16).
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Lévy’s inequalities were derived by Paul Lévy in a general investigation of sums of
independent random vectors; see again Ledoux and Talagrand (1991) for an excellent
exposition. TheHoffmann-Jørgensen inequality appears inHoffmann-Jørgensen (1974) as
an extension of Kolmogorov’s converse maximal inequality. The latter relates moments of
a sum of centered independent real-valued symmetric random variables with its quantiles
andwith themoments of themaxima of the summands (see Exercise 11.18). Amore general
version of Lemma 11.16, as well as a thorough discussion of the topic and its implications,
can be found in de la Peña and Giné (1999, Section 1.2). Lemma 11.16 is due to Giné,
Latała, and Zinn (2000).
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11.7 E X ERC I S E S

11.1. Show that it is not necessarily true that the variance of the supremumof an empirical
process is upper bounded by the wimpy variance.Hint: consider n = 1, T = {1, 2},
and binary-valued random variables.

11.2. (A BAD EXAMPLE FOR VARIANCE BOUNDS) Consider T = {1, . . . , n} and
assume that the Xi,s are i.i.d. exponential random variables with mean 1. Then
Z = sups∈T

∑n
i=1 Xi,s is the supremum of n i.i.d. random variables. Compute the

expectation and the variance of Z. Compute the variance upper bound provided by
Theorem 11.1. Compare. Letting Zi = sups∈T

∑n
j�=i Xj,s, compute the upper bound∑n

i=1 E
[
(Z – Zi)2

]
and compare the result with the true value of Var (Z).Hint: the

expectation and variance of Z are respectively Hn the n-th harmonic number, and
H2

n the n-th harmonic number of the second kind (H2
n ≤ π2/6).

11.3. Prove that Theorem 11.1 still holds if the index set is not assumed to be count-
able but the process is separable. Hint: let S ⊆ T be a separant. Let s1, s2, . . . be
an enumeration of the elements of S . Apply Theorem 11.1 to the empirical process
indexed by s1, . . . , sn and use the monotone convergence theorem.

11.4. (SYMMETRIZATION AND ASYMMETRIC PROCESSES) For i = 1, . . . , n and
s = 1, . . . , n, let Xi,s be independent random variables with P{Xi,s = n/(n – 1)} =
(n – 1)/n and P{Xi,s = –n} = 1/n. Let ε1, . . . , εn be independent random Rade-
macher variables that are independent of (Xi,s), 1 ≤ i, s ≤ n. Let T = {1, . . . , n}.
Prove that for sufficiently large n,

E sup
s∈T

n∑
i=1

εiXi,s ≥ n
2

log n
4

log log n
.

Deduce from this observation that

1
2
E sup

s∈T

n∑
i=1

εiXi,s > E sup
s∈T

n∑
i=1

Xi,s.
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Compare with Theorem 11.4. Hint: note that with high probability, at least n/4
Rademacher variables are negative. Use and prove the fact that the maximum of
n independent binomial random variables with parameters n/4 and 1/n is at least
log(n/4)/ log log n.

11.5. (IMPROVED SYMMETRIZATION INEQUALITIES) Let X1, . . . ,Xn be independent
random vectors Xi = (Xi,s)s∈T . Let� denote a convex increasing function. Assume
that for each i = 1, . . . , n and s ∈ T ,Xi,s is integrable and centered. Let ε1, . . . , εn be
independent of Rademacher random variables. Prove that

E

[
�

(
1
2
sup
s∈T

∣∣∣∣∣
n∑
i=1

εiXi,s

∣∣∣∣∣
)]

≤ E

[
�

(
sup
s∈T

∣∣∣∣∣
n∑
i=1

Xi,s

∣∣∣∣∣
)]

≤ E

[
�

(
2 sup
s∈T

∣∣∣∣∣
n∑
i=1

εiXi,s

∣∣∣∣∣
)]

.

11.6. Prove that Theorem 11.4 still holds if the index set is assumed to be separable.Hint:
proceed as in Exercise 11.3.

11.7. (BOUNDING THE GAUSSIAN QUANTILE FUNCTION) Let � be the standard
Gaussian distribution function. Prove that for t ≥ 5,

�–1(1 – 1/t) ≥
√
2 log t – log log t – log(4π)

and that for t ≥ 2

�–1(1 – 1/t) ≤
√
2 log t – log log t – log(π).

Hint: use Lemma 10.1.
11.8. (NEMIROVSKI’S INEQUALITY IN THE NON-SYMMETRIC CASE) Using the nota-

tion of Theorem 11.2, prove that even if theXi are not assumed to be symmetric but
centered,

E ‖Sn‖2∞ ≤ 2 (1 + 4 log (2d))�2.

11.9. (OPTIMALITY OF THE CONSTANT IN THE CONTRACTION PRINCIPLE) Prove
the optimality of the constant 1/2 on the left-hand side of the contraction principle
(Theorem 11.6). Hint: let T = {1, 2}, X deterministic, and X1,1 = X2,1 = 1 while
X1,2 = X2,2 = –1. Let ϕ1(x) = x, ϕ2(x) = –|x| and � the identity. (See the remark
following statement of Theorem 4.12 in Ledoux and Talagrand (1991).)

11.10. (CONTRACTION PRINCIPLE AND TAIL BOUNDS) Let B denote a separable
Banach spacewith norm ‖ · ‖B. Let ε1, . . . , εn be independent Rademacher random
variables. Let 1 ≥ λ1 ≥ · · · ≥ λn ≥ 0. Let v1, . . . , vn ∈ B. Prove that for all t > 0,
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P

{∥∥∥∥∥
n∑
i=1

λiεivi

∥∥∥∥∥
B

> t

}
≤ 2P

{∥∥∥∥∥
n∑
i=1

εivi

∥∥∥∥∥
B

> t

}
.

(See Theorem 4.4 in Ledoux and Talagrand (1991).)
11.11. (CONTRACTION PRINCIPLE FOR GAUSSIAN SUMS) Let � : R+ → R be a

nondecreasing convex function. Let X1, . . . ,Xn be independent random vectors
Xi = (Xi,s)s∈T . Assume that for each i, s, Xi,s is integrable and centered. For each
i = 1, . . . , n, let ϕi : R → R denote a Lipschitz function such that ϕi(0) = 0. Let
Y1, . . . , Yn be independent standard Gaussian random variables. Prove that

E

[
�

(
1
2
sup
s∈T

∣∣∣∣∣
n∑
i=1

Yiϕi(Xi,s)

∣∣∣∣∣
)]

≤ E

[
�

(
2 sup
s∈T

∣∣∣∣∣
n∑
i=1

YiXi,s

∣∣∣∣∣
)]

.

(See Corollary 3.17 in Ledoux and Talagrand (1991).)
11.12. (COROLLARY OF CONTRACTION PRINCIPLE I) LetB denote a separable Banach

space with norm ‖ · ‖B. Let X1, . . . ,Xn be independent B-valued symmetric ran-
dom variables. Let λ1, . . . , λn be real numbers with ‖λ‖∞ = supi=1,...,n |λi|. Prove
that for all p ≥ 1,

E

[∥∥∥∥∥
n∑
i=1

λiXi

∥∥∥∥∥
p

B

]
≤ ‖λ‖p∞E

[∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥
p

B

]
.

(See Garling (2007, p. 188).)
11.13. (COROLLARY OF CONTRACTION PRINCIPLE II) LetB denote a separable Banach

space with norm ‖ · ‖B. Let X1, . . . ,Xn and Y1, . . . , Yn denote independent real-
valued symmetric random variables with |Xn| ≤ |Yn| for all n almost surely. Let
v1, . . . , vn ∈ B. Prove that for all p ≥ 1,

E

[∥∥∥∥∥
n∑
i=1

Xivi

∥∥∥∥∥
p

B

]
≤ E

[∥∥∥∥∥
n∑
i=1

Yivi

∥∥∥∥∥
p

B

]
.

(See Garling (2007, p. 188).)
11.14. (COROLLARY OF CONTRACTION PRINCIPLE III) Let B denote a separable

Banach space with norm ‖ · ‖B. Let X1, . . . ,Xn and Y1, . . . , Yn denote inde-
pendent real-valued symmetric random variables with E|Yi| ≥ 1/C for all i and
Xn = sign(Yn). Let v1, . . . , vn ∈ B. Prove that for all p ≥ 1,

E

[∥∥∥∥∥
n∑
i=1

Xivi

∥∥∥∥∥
p

B

]
≤ CpE

[∥∥∥∥∥
n∑
i=1

Yivi

∥∥∥∥∥
p

B

]
.

(See Garling (2007, p. 188).)
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11.15. (COMPARISON OF GAUSSIAN AND RADEMACHER SUMS) Let B denote a separ-
able Banach space with norm ‖ · ‖B. Let X1, . . . ,Xn be independent Rademacher
variables and let Y1, . . . , Yn be independent standard Gaussian variables. Let
v1, . . . , vn ∈ B. Prove that

E

[∥∥∥∥∥
n∑
i=1

Yivi

∥∥∥∥∥
B

]
≤ √

2 log n E

[∥∥∥∥∥
n∑
i=1

Xivi

∥∥∥∥∥
B

]
.

Hint: see Inequality (4.9) in Ledoux and Talagrand (1991).
11.16. (ANOTHER VARIANCE BOUND) Let |αi,s| ≤ 1 for all i = 1, . . . , n and s ∈ T . Let

Y1, . . . , Yn be independent centered random variables such that for all integers
q ≥ 2,

E|Yi|q ≤ q!
cq–2σ 2

2

for some constants c and σ . Let Z = sups∈T
∑n

i=1 αi,sYi. Show that

Var (Z) ≤ nσ 2 + 2EZ.

Hint: this result is a by-product of Bousquet (2002b, Theorem 2.12).
11.17. Using the notation of Theorem 11.10, letting E = EZ/n, prove that

Var (Z) ≤ nσ 2 + (2 – E)EZ.

Hint: use the same pattern of proof, but replace Zi by Zi – E. See Rio (2012).
11.18. (HOFFMANN–JØRGENSEN INEQUALITY FOR HIGHER MOMENTS) Let

Xi = (Xi,s)s∈T for i = 1, . . . , n be independent symmetric (not necessar-
ily identically distributed) random vectors. Let Z = sups∈T

∣∣∑n
i=1 Xi,s

∣∣ and
M = maxi≤n,s∈T |Xi,s|. Prove that for any p ≥ 2, there exists a constant κp such that

E [Zp]1/p ≤ κp
(
EZ + E[Mp]1/p

)
.

Show that as p → ∞, κp/p remains bounded. Hint: follow the pattern of proof of
Corollary 11.15. (Note that it is possible to choose κp so that (log p)κp/p remains
bounded as p → ∞; see Latała (1997) and de la Peña and Giné (1999, Theorem
1.5.11 and Example 1.5.12).)

11.19. (SUB-GAMMA SUMMANDS) Let (αi,s) be a collection of real numbers indexed by
i = 1, . . . , n and s ∈ T such that |αi,s| ≤ 1 for all i and s. Let X1, . . . ,Xn be inde-
pendent centered random variables such that for all integers q ≥ 2,

E|Xi|q ≤ q!
cq–2σ 2/n

2
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for some constants c and σ . Let Z = sups∈T
∑

i=1,...,n αi,sXi. Check that
Var (Z) ≤ 2σ 2 and that

Var (Z) ≤ σ 2 sup
s∈T

n∑
i=1

α2
i,s/n + E sup

s∈T

n∑
i=1

α2
i,sX

2
i

and

Var (Z) ≤ 2σ 2 sup
s∈T

n∑
i=1

α2
i,s/n + 2E sup

s∈T

n∑
i=1

εiα
2
i,sX

2
i .

Hint: use Theorem 11.1, then use Theorem 11.17 to upper bound the last
summand.

11.20. Let X = (X1, . . . ,Xn) be uniformly distributed over [–1, 1]n. Let Z =
√∑n

i=1 X
2
i be

the Euclidean norm of X. Prove that
√
n/3 – 1 ≤ EZ ≤ √

n/3.

Prove also that

P
{
Z ≥ EZ + t

√
n
} ≤ e–nt

2/8.

Hint: represent Z as the supremum of an empirical process. Use Theorem 11.1
to check that Var (Z) ≤ 4/3. Use Theorem 6.10 to establish the tail bound. This
provides an example where the weak and wimpy variance estimates (�2 and σ 2)
are of the same order of magnitude and where they are both significantly smaller
than EZ. The bound provided by Theorem 11.8, �2 ≤ σ 2 + 8EZ is not sharp in
this case.



12

Suprema of Empirical Processes:
Exponential Inequalities

In this chapter we continue the study of suprema of empirical processes started in
Chapter 11. We use the same notation introduced there. Recall that T denotes a finite or
countable index set, and Xi = (Xi,s)s∈T for i = 1, . . . , n are independent (not necessarily
identically distributed) real vector-valued random variables. The empirical process indexed
by the index set T is the vector-valued random variable

∑n
i=1 Xi. Its supremum is defined as

Z = sup
s∈T

n∑
i=1

Xi,s.

While Chapter 11 focuses on upper bounds for the variance of Z, in this chapter we proved
exponential concentration inequalities. Our main tool is the entropy method introduced in
Chapter 6.

The concentration inequalities derived in Section 5.5 for the suprema of Gaussian and
Rademacher processes rely on specific tools such as the Bernoulli and the Gaussian logar-
ithmic Sobolev inequalities. To establish analogous bounds for more general distributions,
we may start with the modified logarithmic Sobolev inequality of Theorem 6.6. In this
chapter we derive extensions of Hoeffding’s, Bernstein’s, and Bennett’s inequalities for
suprema of empirical processes. To this end, we tailor the modified logarithmic Sobolev
inequality to our needs, in an increasingly sophisticated way, in Sections 12.2 and 12.4.
The argument of Section 12.3 combines symmetrization techniques from Section 11.3
with the convex distance inequality to obtain an exponential inequality for suprema of
self-normalized empirical processes.

The main result in this chapter is Bousquet’s inequality (Theorem 12.5), a Bennett-
type inequality for suprema of centered empirical processes, proved in Section 12.4. In
Section 12.5 we survey a variety of related results such as tail bounds for sums of possibly
non-identically distributed terms and left-tail inequalities.

In Section 12.6 we describe an application to Pearson’s chi-square statistics.
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12.1 An Extension of Hoeffding’s Inequality

Westart with the following extensions ofHoeffding’s inequality (Theorem2.2) to empirical
processes.

Theorem 12.1 Assume that the sequences of vectors (bi,s)s∈T and (ai,s)s∈T , i = 1, . . . , n are
such that ai,s ≤ Xi,s ≤ bi,s holds for all i = 1, . . . , n and s ∈ T with probability 1. Denote

v = sup
s∈T

n∑
i=1

(bi,s – ai,s)2 and V =
n∑
i=1

sup
s∈T

(bi,s – ai,s)2.

Then for all λ ∈ R,

logEeλ(Z–EZ) ≤ vλ2

2
and logEeλ(Z–EZ) ≤ Vλ2

8
.

The first inequality is a consequence of Theorem 6.5, while the second follows from the
bounded-differences inequality (Theorem 6.2). Clearly, v ≤ V but the second inequality
may be better due to the better constant factor.

12.2 A Bernstein-Type Inequality for Bounded Processes

In this section we describe an improvement of the Hoeffding-type inequalities of the previ-
ous section in the same spirit that Bernstein’s inequality improves Hoeffding’s for sums of
independent random variables.

Such an inequality may be proved for suprema of uniformly bounded empirical pro-
cesses as a simple application of the “exponential Efron–Stein inequality” of Theorem 6.16
combined with concentration of self-bounding functions (Theorem 6.12). Recall that

�2 = E sup
s∈T

n∑
i=1

X2
i,s and σ 2 = sup

s∈T

n∑
i=1

EX2
i,s

denote the weak variance and the wimpy variance associated with the empirical process.

Theorem 12.2 Assume that EXi,s = 0, and |Xi,s| ≤ 1 for all s ∈ T and i = 1, . . . , n. Then for
all 0 ≤ λ < 1/2,

logEeλ(Z–EZ) ≤ 2(�2 + σ 2)λ2

2(1 – 2λ)

and for t ≥ 0,

P {Z ≥ EZ + t} ≤ exp
(
–

t2

2 (2(�2 + σ 2) + t)

)
.
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Proof For each i = 1, . . . , n, let Z′
i = sups∈T (X

′
i,s +

∑
j�=i Xj,s) where X′

1, . . . ,X
′
n are inde-

pendent of each other and of X1, . . . ,Xn, and X′
i has the same distribution as Xi.

IntroduceW = sups∈T
∑n

i=1 X
2
i,s and denote by ŝ ∈ T the index for which

∑n
i=1 Xi,s

is largest, that is, Z =
∑n

i=1 Xi,̂s. Then clearly, (Z – Z′
i)
2
+ ≤ (Xi,̂s – X′

i,̂s)
2 for each i ≤ n.

Then, since E[X′
i,̂s | X1, . . . ,Xn] = 0,

n∑
i=1

E
[
(Z – Z′

i)
2
+ | X1, . . . ,Xn

] ≤ n∑
i=1

E
[
(Xi,̂s – X′

i,̂s)
2 | X1, . . . ,Xn

]
≤ W + sup

s∈T

n∑
i=1

E
[
(X′

i,s)
2]

= W + σ 2.

Now, by the exponential Efron–Stein inequality (Theorem 6.16),

logEeλ(Z–EZ) ≤ λ

1 – λ
logEeλ(W+σ 2)

for λ ∈ [0, 1).
As W is a self-bounding function of X1, . . . ,Xn (see Section 6.7), Theorem 6.12

implies that

logEeλW ≤ �2 (eλ – 1).
Combining the last two inequalities, we obtain

logEeλ(Z–EZ) ≤ λ

1 – λ
�2 (eλ – 1) + λσ 2.

Using the fact that (eλ – 1)(1 – λ) ≤ (eλ – 1)e–λ = 1 – e–λ ≤ λ for λ ∈ [0, 1), we
have

logEeλ(Z–EZ) ≤ λ2(�2 + σ 2)
(1 – λ)2

.

For λ ∈ [0, 1/2) the right-hand side may be upper bounded by

2(�2 + σ 2)λ2

2(1 – 2λ)
,

which concludes the proof of the first inequality. To determine the inequalities for the
tail probabilities, observe that this bound has the same form as the upper bound for the
logarithmicmoment-generating function of sub-gamma random variables discussed in
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Section 2.4 (with a variance factor 2(�2 + σ 2) and scale parameter 2). The proof of
the tail bound follows by the calculations of Section 2.4. �

When the random variables (Xi)1≤i≤n are identically distributed, Theorem 12.5 repres-
ents an improvement on Theorem 12.2. A comparable improvement for non-identically
distributed variables is described in Section 12.5.

12.3 A Symmetrization Argument

Next we describe a variant of the Bernstein-type inequality of the previous section. Here
the argument is based on symmetrization of tail probabilities and concentration of con-
vex Lipschitz functions of bounded independent random variables (Theorem 6.10). The
important difference with respect to Theorem 12.2 is that here we do not assume any
boundedness of the random vectors. Instead, the tail inequalities involve a random quantity
that may be more difficult to control.

Theorem 12.3 Let X′
1, . . . ,X

′
n be i.i.d. random vectors, independent of X1, . . . ,Xn. Let

W = E

[
sup
s∈T

n∑
i=1

(Xi,s – X′
i,s)

2
∣∣∣∣X1, . . . ,Xn

]
.

Then for all t ≥ 0,

P
{
Z ≥ EZ + 2

√
tW
}
≤ 4e–t/4

and

P
{
Z ≤ EZ – 2

√
tW
}
≤ 4e–t/4.

Note that W is a random variable. Its expected value satisfies Var (Z) ≤ EW ≤ 4�2.
Onemay interpret the result as sub-Gaussian inequalities for the “self-normalized” variables
(Z – EZ)/

√
W .

The proof relies on the following technical lemma.

Lemma 12.4 Let f1, f2, f3 : X 2n → R be functions of 2n variables and define
Zi = fi(X1, . . . ,Xn,X′

1, . . . ,X
′
n) for i ∈ {1, 2, 3} where X1, . . . ,Xn,X′

1, . . . ,X
′
n are

independent random variables taking values inX . Define

Z′
i = E [Zi | X1, . . . ,Xn]

for i ∈ {1, 2, 3}. Assume that Z3 ≥ 0 and that there exists κ > 0 such that for all t > 0,

P
{
Z1 ≥ Z2 + (Z3t)1/2

} ≤ κe–γ t .
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Then, for all t ≥ 0,

P
{
Z′
1 ≥ Z′

2 + (Z′
3t)

1/2} ≤ κe–γ t .

Proof As√xy = infθ>0(θx + y/(4θ)),

Z1 ≥ Z2 + (Z3t)1/2 if and only if sup
θ>0

4θ(Z1 – Z2 – θZ3) ≥ t

and similarly,

Z′
1 ≥ Z′

2 + (Z′
3t)

1/2 if and only if sup
θ>0

4θ(Z′
1 – Z

′
2 – θZ′

3) ≥ t.

If we defineU = supθ>0 4θ(Z1 – Z2 – θZ3) andU′ = supθ>0 4θ(Z
′
1 – Z

′
2 – θZ′

3) then,
by Jensen’s inequality,

U′ = sup
θ>0

4θE[Z1 – Z2 – θZ3 | X1, . . . ,Xn] ≤ E[U | X1, . . . ,Xn].

But, by another application of Jensen’s inequality, for any nondecreasing convex
function ϕ, we have

Eϕ(U′) ≤ E[ϕ(E[U | X1, . . . ,Xn])] ≤ Eϕ(U).

We may conclude using the tail comparison inequality of Exercise 2.24 �

Proof The proof uses Lemma 12.4 with Z1 = Z and Z2 = sups∈T
∑n

i=1 X
′
i,s. Note that

E [Z2 | X1, . . . ,Xn] = EZ. By the lemma, it suffices to prove that

P
{
Z1 ≥ Z2 + 2

√
tW ′

}
≤ 4e–t/4,

whereW ′ = sups∈T (Xi,s – X′
i,s)

2.
For each i = 1, . . . , n, introduce Yi = (Xi + X′

i)/2, Y
′
i = (Xi – X′

i )/2 and also let
ε1, . . . , εn be independent Rademacher variables. By exchangeability of Xi and X′

i ,
the joint distribution of (Yi, Y ′

i ,W
′)i≤n is the same as that of (Yi, εiY ′

i ,W
′)i≤n.

Note that W ′ = 4 sups∈T
∑n

i=1 Y
′2
i,s , while Z1 = sups∈T

∑n
i=1(Yi,s + Y ′

i,s) and
Z2 = sups∈T

∑n
i=1(Yi,s – Y

′
i,s). Thus, we have

P
{
Z1 ≥ Z2 + 2

√
tW ′

}
= P

{
sup
s∈T

n∑
i=1

(Yi,s + εiY ′
i,s) ≥ sup

s∈T

n∑
i=1

(Yi,s – εiY ′
i,s) + 2

√
tW ′

}
.
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We bound the probability above conditionally, by fixing the values of X1, . . . ,Xn and
X′
1, . . . ,X

′
n. Then

φ1(ε1, . . . , εn) = sup
s∈T

n∑
i=1

(Yi,s + εiY ′
i,s)

and

φ2(ε1, . . . , εn) = sup
s∈T

n∑
i=1

(Yi,s – εiY ′
i,s)

are convex functions on [–1, 1]n that are Lipschitz with constant
√
W ′. IfM denotes

the common median of φ1 = φ1(ε1, . . . , εn) and φ2 = φ2(ε1, . . . , εn), then, denoting
by Pε conditional probability with the values of the Xi,X′

i fixed,

P
{
Z1 ≥ Z2 + 2

√
tW ′ | X1, . . . ,Xn,X′

1, . . . ,X
′
n

}
= Pε

{
φ1 ≥ φ2 + 2

√
tW ′

}
≤ Pε

{
φ1 ≥ M +

√
tW ′

}
+ Pε

{
φ2 ≤ M –

√
tW ′

}
≤ 4e–t/4 (by Theorem 7.12).

The lower tail inequality is proved similarly. �

For uniformly bounded empirical processes, one may recover a version of Theorem 12.2
from Theorem 12.3. Indeed, if |Xi,s| ≤ 1 for all i = 1, . . . , n and s ∈ T , thenW/4 is a self-
bounding function. This may be seen by introducing

Wi = E

⎡⎣sup
s∈T

n∑
j�=i

(Xj,s – X′
j,s)

2
∣∣∣∣X(i)

⎤⎦
and noting that 0 ≤ W –Wi ≤ 4 for all i = 1, . . . , n and

∑n
i=1(W –Wi) ≤ W . Hence, by

Theorem 6.12,

P
{
W ≥ EW +

√
8tEW + 4t/3

}
≤ e–t/4.

The last inequality may be combined with Theorem 12.3 to obtain

P
{
Z ≥ EZ + 4

√
t�2 + t

√
2
}
≤ 4e–t/4.
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12.4 Bousquet’s Inequality for Suprema
of Empirical Processes

Theorem 12.2 is a useful tool for bounding deviations of the supremum of an empirical
process from its mean, but it is not completely satisfactory. Indeed, if the index set T is
reduced to a single element, Theorem12.2 implies Bernstein’s inequalitywith a sub-optimal
constant but one does not recover Bennett’s inequality (Theorem 2.9). In this section we
prove a Bennett-style concentration inequality for the supremum of an empirical process.
As before, let Z = sups∈T

∑n
i=1 Xi,s. The proof is more involved than that of Theorem 12.2

as it does not follow directly from Theorem 6.16.

Theorem 12.5 (BOUSQUET’S INEQUALITY) Let X1, . . . ,Xn be independent identically
distributed random vectors. Assume that EXi,s = 0, and that Xi,s ≤ 1 for all s ∈ T .
Let v = 2EZ + σ 2 (where σ 2 = sups∈T

∑n
i=1 EX

2
i,s is the wimpy variance). Let

φ(u) = eu – u – 1 and h(u) = (1 + u) log(1 + u) – u, for u ≥ –1. Then for all λ ≥ 0,

logEeλ(Z–EZ) ≤ vφ(λ).

Also, for all t ≥ 0,

P {Z ≥ EZ + t} ≤ e–vh(t/v).

Recall that by Theorem 11.10, Var (Z) ≤ v, which makes the appearance of v natural in
the statement of the theorem. By bounding h(u) as in Section 2.7, the theorem implies

P {Z ≥ EZ + t} ≤ exp
(
–

t2

2(v + t/3)

)
.

We introduce some notation used in the proof. For all i = 1, . . . , n, let Zi =
sups∈T

∑
j:j�=i Xi,s and let ŝi ∈ T be an index such that

∑
j:j�=i Xj,̂si = Zi. As Z ≥∑n

j=1 Xj,̂si ,
we have Xi,̂si ≤ Z – Zi ≤ Xi,̂s and

n∑
i=1

(Z – Zi) ≤
n∑
i=1

Xi,̂s = Z.

Denoting Yi = Z – Zi, we have E(i)Yi ≥ E(i)Xi,̂si = 0 (recall that E(i) denotes conditional
expectation conditioned on X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn)). We also have Yi ≤ 1 with
probability one.

As in the proof of Theorem 6.12, the proof of Theorem 12.5 starts from the modified
logarithmic Sobolev inequality of Theorem 6.6. The next step is to find an appropriate
upper bound for eλZφ(–λ(Z – Zi)). In the proof of Theorem 6.12 this was achieved by
using the elementary inequality φ(–λx)/φ(–λ) ≤ x for 0 ≤ x ≤ 1. However, in the proof
of Theorem 12.5 we also need to handle negative values of x and therefore we need the
following lemma.
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Lemma 12.6 If β ≥ 0, then, for all λ ≥ 0 and x ≤ 1,

φ(–λx)
φ(–λ)

≤ x + (βx2 – x) e–λx

1 + (β – 1) e–λ
.

The following lemma provides a tool that we may use for proving Lemma 12.6.

Lemma 12.7 Let I be an interval containing 0. Let f , g : I → R be twice differentiable
functions such that f (0) = g(0) = f ′(0) = g′(0) = 0, g′′(0) > 0, and xg′(x) > 0 for
every x �= 0. The function ρ defined by ρ(0) = f ′′(0)/g′′(0) and ρ(x) = f (x)/g(x) if
x ∈ I \ {0} is continuous and nondecreasing on I whenever f ′′g′ – f ′g′′ ≥ 0 on I.

Proof Note first that g(0) = 0 and xg′(x) > 0 for every x �= 0 implies that g(x) > 0
whenever x �= 0. Hence ρ is well defined and twice differentiable on I \ {0}. The con-
tinuity of ρ at 0 follows from l’Hôpital’s rule. For every x �= 0, ρ ′(x) has the same
sign as

g′(x)
(
f ′(x)
g′(x)

–
f (x)
g(x)

)
, or, equivalently, as�(x) def= x

(
f ′(x)
g′(x)

–
f (x)
g(x)

)
.

Now the extended mean value theorem ensures that for some number c between 0
and x,

f ′(c)
g′(c)

=
f (x)
g(x)

.

Moreover, the function f ′/g′ (taking value f ′′(0)/g′′(0) at 0) is continuous on I and
the assumption f ′′g′ – f ′g′′ ≥ 0 ensures that f ′/g′ is nondecreasing. Hence, for every
x �= 0,

x
f ′(c)
g′(c)

≤ x
f ′(x)
g′(x)

,

and therefore �(x) ≥ 0. This proves that ρ′(x) ≥ 0 from which the monotonicity of
ρ follows. �

Proof of Lemma 12.6. To prove the lemma, it suffices to show that for all λ ≥ 0 and
β≥0, the function ρ(x)=φ(–λx)/(x +(βx2 – x) e–λx) (with ρ(0)=λ2/(2(β + λ)))
is nondecreasing for x ∈ (–∞, 1].

The lemma obviously holds for λ = 0. Fix λ > 0 and β ≥ 0. We may rewrite ρ as
ρ = f/g with

f (x) = eλxφ(–λx) = λxeλx – eλx + 1 and g(x) = xeλx + βx2 – x.
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Then, for every x �= 0,

xg′(x) = x2
(
λeλx + 2β

)
+ x

(
eλx – 1

)
> 0

and

f ′′(x)g′(x) – f ′(x)g′′(x) = λ2eλx
(
φ (λx) + 2βλx2

)
> 0,

and therefore Lemma 12.7 implies the monotonicity of ρ. �

The first step of the proof of Bousquet’s inequality is the following lemma. It
is based on the modified logarithmic Sobolev inequality of Theorem 6.6 and uses
Lemma 12.6 to upper bound the expectation of exp(λZ)φ(–λ(Z – Zi)) conditionally on
X(i) = (X1, . . . ,Xi–1,Xi+1, . . . ,Xn). Here we use β = 1/2.

Lemma 12.8 Let Z,φ, and v be defined as in Theorem 12.5. Let f (λ) = φ(λ) + λ/2. If
G(λ) = logEeλ(Z–EZ), then, for λ ≥ 0,

f (λ)G′(λ) – f ′(λ)G(λ) ≤ (v/2) (λf ′(λ) – f (λ)).

Proof Recall the modified logarithmic Sobolev inequality (Theorem 6.6):

Ent(eλZ) = λE
[
ZeλZ

]
– E

[
eλZ
]
logE

[
eλZ
] ≤ n∑

i=1

E
[
eλZφ (–λ(Z – Zi))

]
.

Since Z – Zi ≤ 1, Lemma 12.6 with β = 1/2 implies that for all i = 1, . . . , n,

φ (–λ(Z – Zi)) eλZ

≤ θ(λ)
(
(Z – Zi)eλZ +

(
1/2(Z – Zi)2 – (Z – Zi)

)
eλZi

)
,

where θ(λ) = φ(–λ)/(1 – (1/2) exp(–λ)). Taking conditional expectations, from
Lemma 11.11,

E(i) [(Z – Zi)2/2 – (Z – Zi)
] ≤ 1

2
E(i)[X2

i,̂si],

and therefore

E(i) [φ (–λ(Z – Zi)) eλZ
]

≤ θ(λ)
(
E(i) [(Z – Zi)eλZ

]
+
1
2
E(i)[X2

i,̂si]e
λZi

)
≤ θ(λ)

(
E(i) [(Z – Zi)eλZ

]
+
1
2
sup
s∈T

E[X2
i,s]e

λZi

)
.
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Using the fact that E(i)[Z – Zi] ≥ 0 and applying Jensen’s inequality,

eλZi ≤ eλE
(i)Z ≤ E(i)eλZ.

Thus, for every i = 1, . . . , n, we have

E(i) [φ (–λ(Z – Zi)) eλZ
] ≤ θ(λ)E(i)

[(
Z – Zi +

1
2
sup
s∈T

E[X2
i,s]
)
eλZ
]
.

Plugging this last inequality into themodified logarithmic Sobolev inequality and using
the fact that

∑n
i=1(Z – Zi) ≤ Z,

Ent(eλZ) ≤ θ(λ)

(
E

[
eλZ

(
Z +

1
2

n∑
i=1

sup
s∈T

E[X2
i,s]

)])

≤ θ(λ)
(
E
[
eλZ

(
Z – EZ + EZ +

σ 2

2

)])
,

by recalling the notation σ 2 =
∑n

i=1 sups∈T E[X2
i,s] = sups∈T

∑n
i=1 E[X

2
i,s]. This last

inequality may be rewritten as

Ent(eλ(Z–EZ)) ≤ θ(λ)
(
E
[
(Z – EZ)eλ(Z–EZ)

]
+
v
2
Eeλ(Z–EZ)

)
,

or, dividing both sides by E exp(λ(Z – EZ)), as

λG′(λ) – G(λ) ≤ θ(λ)
(
G′(λ) +

v
2

)
.

The lemma follows by observing that f ′(λ) > 0 for λ ≥ 0 and rearranging the last
inequality. �

Bousquet’s inequality now follows easily from Lemma 6.25.

Proof of Theorem 12.5. Let

g(λ) =
v
2
· λf ′(λ) – f (λ)

f 2(λ)

for λ > 0 and g(0) = v, where f (λ) = φ(λ) + λ/2.
It is easy to check that g is continuous on [0, +∞). By Lemma 12.8, G(λ) =

logEeλ(Z–EZ) satisfies

f (λ)G′(λ) – f ′(λ)G(λ) ≤ f 2(λ)g(λ)
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for λ ≥ 0. From Lemma 6.25, it follows that for all λ ≥ 0,

G(λ) ≤ v
2
f (λ)

∫ λ

0

xf ′(x) – f (x)
f 2(x)

dx.

The observation that (xf ′(x) – f (x))/f 2(x) = (–x/f (x))′ and that limx↓0 x/f (x) = 2
finally leads to the desired resultG (λ) ≤ vφ(λ).

The tail bound follows using the computation shown in Chapter 2. �

12.5 Non-Identically Distributed Summands
and Left-Tail Inequalities

In this section we present, without proof, two inequalities related to the concentration
bounds of the previous sections. First note that, unlike Bennett’s inequality that holds not
only for sums of i.i.d. random variables but also for sums of independent, non-identically
distributed bounded and centered randomvariables, Bousquet’s inequality requires that the
vectorsX1, . . . ,Xn are identically distributed. The following inequality, though not quite as
sharp as Bousquet’s, is a step in this direction.

Theorem 12.9 Let X1, . . . ,Xn be independent vector-valued random variables and let
Z = sups∈T

∑n
i=1 Xi,s. Assume that for all i ≤ n and s ∈ T , EXi,s = 0, and |Xi,s| ≤ 1. Let

v = 2EZ + σ 2 where σ 2 = supt∈T
∑n

i=1 EX
2
i,s. Then Var (Z) ≤ v and for all λ > 0,

logEeλ(Z–EZ) ≤ vλ
2
(
exp((e2λ – 1)/2) – 1

)
.

In particular, for all t > 0,

P {Z ≥ EZ + t} ≤ exp
(
–
t
4
log (1 + 2 log(1 + t/v))

)
.

The proof of this theorem is quite technical and we do not include it here. Note
that the variance bound is the same as in the case of identically distributed summands
(Theorem 11.10).

Bennett’s inequality holds not only for right tails but also for left tails (i.e. for bound-
ing P{Z ≤ EZ – t}). Whether such an inequality is true for suprema of centered bounded
empirical processes is a natural question. However, the proofs of Theorems 12.5 and 12.9
are tailored to handle deviations above themean. In view ofTheorem12.5, onemaywonder
whether logEeλ(Z–EZ) ≤ vφ (λ) also holds for λ ≤ 0 (where φ(λ) = exp(λ) – λ – 1). This
is still unknown but we do have the following results. Once again, the proofs are omitted.

The next theorem can be proved using variants of the entropy method.
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Theorem12.10 (KLEIN-RIO BOUND)Using the notation and assumptions of Theorem 12.9,
and assuming that the Xi are identically distributed for all λ ≤ 0,

logEeλ(Z–EZ) ≤ v
9
φ (–3λ),

and for all t ≥ 0,

P {Z ≤ EZ – t} ≤ exp
(
–
v
9
h
(
3t
v

))
where h(t) = (t + 1) log(t + 1) – t.

The next theorem can be proved using a variant of the transportation method.

Theorem 12.11 (SAMSON’S BOUND) Recall the notation and assumptions of Theorem 12.9
and let

S2 = E sup
s∈T

n∑
i=1

E
[
(Xi,s – X′

i,s)
2
+ | Xi,s

]
where X′

1, . . . ,X
′
n are independent copies of X1, . . . ,Xn. For all λ ≤ 0,

logEeλ(Z–EZ) ≤ S2

4
φ (–2λ),

and for all t ≥ 0,

P {Z ≤ EZ – t} ≤ exp
(
–

t2

2(S2 + 2t/3)

)
.

Note that by Theorem 11.1, S2 is an upper bound for the variance of Z and S2 ≤ �2 + σ 2,
where�2 = E sups∈T

∑n
i=1 X

2
i,s.

Theorems 12.5 and 12.9 are often used through the next corollary which follows from
bounds on the inverse of h : t → (1 + t) log(1 + t) – t over [0,∞). In particular, one may
prove that

h–1(x) ≤
⎧⎨⎩
√
2x + 3x for x ≥ 0

2x/ log(x) for x ≥ 3
2
√
x for 0 ≤ x ≤ 2/9.

Corollary 12.12 Consider the setup of Theorem 12.5. Let φ(u) = eu – u – 1, and
h(u) = (1 + u) log(1 + u) – u, for u ≥ –1. Then for all λ > 0,

logEeλ(Z–EZ) ≤ vφ(λ),

and

logEe–λ(Z–EZ) ≤ v
9
φ(3λ).
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Also, for all t ≥ 0,

P
{
Z ≥ EZ +

√
2vt +

t
3

}
≤ e–t ,

P
{
Z ≤ EZ –

√
2vt –

t
8

}
≤ e–t ,

and for t ≥ 3v,

P
{
Z ≥ EZ + 2t/ log(t/v)

} ≤ e–t .

12.6 Chi-Square Statistics andQuadratic Forms

As an illustration of the power of Bousquet’s inequality, we present an application to
Pearson’s chi-square statistic, a random variable well known in statistical theory.

Let p1, . . . , pm > 0 such that
∑m

j=1 pj = 1 and suppose that the random vector
(N1, . . . ,Nm) has a multinomial distribution with parameters n, p1, . . . , pm. Pearson’s
chi-square statistic is defined by

Z2 =
m∑
j=1

(Nj – npj)2

npj
.

As is well known from classical statistics (and follows easily from amultivariate central limit
theorem), ifm is fixed and n → ∞,Z2 converges in distribution to the square of the normof
a standard Gaussian vector. Here we derive a non-asymptotic concentration inequality. To
this end, introduce the random variablesWi,j for i = 1, . . . , n and j = 1, . . . ,m, defined by

Wi,j =
{
1/√pj if Yi = j
0 otherwise

where Y1, . . . , Yn are independent random variables with distribution P{Yi = j} = pj for
j = 1 . . . ,m. Then we may writeNj =

√pj
∑n

i=1 Wi,j and Z2 can be written as

Z2 =
1
n

m∑
j=1

(
n∑
i=1

(Wi,j – EWi,j)

)2

.

The key idea is to represent the (nonnegative) random variable Z as the supremum of an
empirical process. Indeed, if T is a dense countable subset of the unit Euclidean ball inRm,
then, by the Cauchy–Schwarz inequality,

Z = sup
s∈T

1√
n

n∑
i=1

⎛⎝ m∑
j=1

sj(Wi,j – EWi,j)

⎞⎠,

which is of the form sups∈T
∑n

i=1 Xi,s with Xi,s =
∑m

j=1 sj(Wi,j – EWi,j)/
√
n.



354 | S U P R EMA OF EMP I R I C A L P ROCE S S E S : E X PONENT I A L I N EQUA L I T I E S

Note first that by the Cauchy–Schwarz inequality,

EZ ≤ √
EZ2 =

√
m – 1.

The wimpy variance may be bounded by straighforward calculation as

σ 2 = sup
s∈T

Var

⎛⎝ m∑
j=1

sj
Nj – npj√npj

⎞⎠ ≤ 1.

Denoting pmin = minj=1,...,m pj, wemay bound the variance ofZ by Theorem 11.10 to obtain

Var (Z) ≤ σ 2 + 2

√
1

npmin
EZ ≤ 1 + 2

√
m – 1
npmin

.

On the other hand, Theorem 12.5 may be used directly to obtain the following exponential
tail inequality.

Theorem 12.13 Let Z2 be Pearson’s chi-square statistic defined above. Then for all ε, t > 0,

P

{
Z ≥ (1 + ε)

√
m – 1 +

√
2t + κ (ε)

√
1

npmin
t

}
≤ e–t ,

where κ (ε) = 2
( 1
3 + ε–1

)
.

12.7 Bibliographical Remarks

Theorem 12.1 was noted by Massart (1998). Hoeffding-type inequalities for sums of inde-
pendent random vectors may also be derived using Marton’s transportation method (see
Chapter 8).

The material in Section 12.3 is based on Panchenko (2003), though the proof shown
here gives slightly worse constants. Panchenko’s theorem can be regarded as the latest
in a long series of papers beginning with Vapnik and Chervonenkis (1971, 1974, 1981).
Some of the results stated in these papers are given below in Exercises 12.1, 12.3, and 12.4.
Panchenko was the first to blend the symmetrization and conditioning arguments, which
form the heart of the original arguments of Vapnik and Chervonenkis, with Talagrand’s
convex distance inequality.

Concentration inequalities for suprema of self-normalized empirical processes have been
derived using the entropymethod byBercu,Gassiat, andRio (2002). Adopting the notation
of this chapter, they considered

Z = sup
s∈T

∑n
i=1 Xi,s√∑n
i=1 X

2
i,s
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where each Xi,s is assumed to be centered with unit variance. Assuming that
supn=1,2,... E

[
sups∈T

∑n
i=1 Xi,s

]
/
√
n is finite, Bercu, Gassiat, and Rio (2002) proved expo-

nential tail bounds for Z using a variant of the entropy method starting from Theorem 6.6.
Theorem 12.5 is due to Bousquet (2002b). This is a refinement of a series of related

results pioneered by Talagrand (1996b) (see also Talagrand 1994b). Ledoux (1997)
showed that the Bennett-type inequality for suprema of bounded empirical processes
described in Talagrand (1996b) can be derived by the entropy method in a transparent
way. Massart (2000a) proved that the constants in Talagrand’s inequality can be kept reas-
onable. Panchenko (2001) investigated the potential and limits of Talagrand’s approach.
Rio (2001, 2002) derived Bennett- and Bernstein-type inequalities with the same variance
factor as in Theorem 12.5 but with a sub-optimal scale factor (see Exercise 12.10). The
proof inRio (2002) starts with themodified logarithmic Sobolev inequality of Theorem6.6.
Bousquet (2002b) derived a version of Lemma 12.6.

Rio (2012) refined Theorem 12.5: using the notation of this theorem, letting E = EZ/n,
he established

logEeλ(Z–EZ) ≤ (v – E2)
(1 – E)2

φ((1 – E)λ)

(see Exercises 12.7 and 12.8).
Most results of Sections 12.5 come from Klein and Rio (2002, 2005). Theorem 12.11

and many related results come from Samson (2007), who used the infimum-convolution
approach to concentration pioneered byMaurey (1991).

The tail bounds for Pearson’s chi-square statistic are taken from Castellan (2003)
and Massart (2006) who also refine Theorem 12.13 to render it suitable for certain statist-
ical applications. Early tail bounds for Pearson’s chi-square statistic were proved by Mason
and van Zwet (1987).

This chapter focuses on tail bounds for suprema of centered empirical processes.
However, certain non-centered empirical processes appear in some applications in statistics
and they also occur in the derivation of left tail bounds in Klein and Rio (2005). Variance
and tail bounds for such quantities are described in Boucheron andMassart (2010).
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12.8 E X ERC I S E S

12.1. (VAPNIK–CHERVONENKIS INEQUALITIES) Let C denote a class of subsets of a
measurable space X and let P be a probability distribution over X . Let Pn and P′n
denote the empirical distributions defined by two independent samples of n ran-
dom variables drawn from the distribution P and let νn = Pn – P. Let h(X1, . . . ,X2n)
denote the VC-entropy of C in a 2n-sample X1, . . . ,X2n. (Recall the definition of
VC-entropy from Section 4.5.) prove that for all ε > 0,

P
{
sup
A∈C

|νn(A)| ≥ 2ε
}
≤ 4E

[
2h(X1,...,X2n)

]
e–nε

2/2.
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Hint: prove first that

P
{
sup
A∈C

|νn(A)| ≥ 2ε
}
≤ 2P

{
sup
A∈C

|Pn(A) – P′n(A)| ≥ ε

}
.

Second, use the fact that the distribution of 2n-samples is invariant under permuta-
tion and prove that

P
{
sup
A∈C

|Pn(A) – P′n(A)| ≥ ε

}
≤ 2E

[
2h(X1,...,X2n)

]
e–2nε

2
.

Now the improved symmetrization inequality given in Exercise 11.5 can be used to
prove in a few lines that

P
{
sup
A∈C

|νn(A)| ≥ 2ε
}
≤ 2E

[
2h(X1,...,Xn)

]
e–nε

2/2

(see Vapnik and Chervonenkis (1971, 1981)). Recall that Theorem 6.14 implies
that the so-called annealed VC-entropy log2 E

[
2h(X1,...,X2n)

]
andEh(X1, . . . ,X2n) are

within a constant factor of each other.
12.2. (SELF-NORMALIZATION) Let X1, . . . ,Xn be independent symmetric real random

variables. Prove that for all t > 0,

P

⎧⎨⎩
∑n

i=1 Xi√∑n
i=1 X

2
i

≥ t

⎫⎬⎭ ≤ e–t
2/2.

See Bercu, Gassiat, and Rio (2002), Giné, Koltchinskii, and Wellner (2003), Giné
and Koltchinskii (2006) and Maurer and Pontil (2009) for more material on
concentration for self-normalized empirical processes.

12.3. (VAPNIK–CHERVONENKIS INEQUALITY FOR RELATIVE DEVIATION) Consider
the notation introduced in Exercise 12.1. Prove that for all ε > 0,

P

{
sup
A∈C

P(A) – Pn(A)√
P(A)

≥ 2ε

}
≤ 2E

[
2h(X1,...,X2n)

]
e–nε

2/2.

Hint: use a symmetrization of the tail probabilities, as in Exercise 12.1, to show that

P

{
sup
A∈C

P(A) – Pn(A)√
P(A)

≥ 2ε

}
≤ 2P

{
sup
A∈C

P′n(A) – Pn(A)√
(Pn(A) + P′n(A))/2

≥ ε

}
.

(See Vapnik and Chervonenkis (1974) and also Anthony and Shawe-Taylor
(1993), Haussler (1992), and Bartlett and Lugosi (1999).)
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12.4. (VAPNIK–CHERVONENKIS INEQUALITY FOR RELATIVE DEVIATION, CONTIN-
UED) Prove that for all ε > 0,

P

{
sup
A∈C

Pn(A) – P(A)√
Pn(A)

≥ 2ε

}
≤ 2E

[
2h(X1,...,X2n)

]
e–nε

2/2.

Hint: see Exercise 12.3. SeeVapnik andChervonenkis (1974), Anthony and Shawe-
Taylor (1993), Haussler (1992), and Bartlett and Lugosi (1999).

12.5. (SUB-GAMMA SUMMANDS) Let (αi,s) be a collection of real numbers indexed by
i = 1, . . . , n and let s ∈ T be such that |αi,s| ≤ 1 for all i and s. Let X1, . . . ,Xn be
independent centered random variables such that for all integers q ≥ 2,

E|Xi|q ≤ q!
cq–2σ 2/n

2

for some constants c andσ (note that this implies thatXi is sub-gammawith variance
factor σ 2/n and scale factor c). Let Z = sups∈T

∑
i≤n αi,sXi. Let

v = σ 2 + 2EZ.

Prove that for λ ≥ 0,

logEeλ(Z–EZ) ≤ vλ2

2(1 – cλ)

(see Bousquet 2002b, Theorem 2.12).
12.6. Let Z and (Zi)i≤n be defined as in Theorem 12.5. Prove that

n∑
i=1

E
[
eλZ – eλZi

] ≤ EeλZ log
(
EeλZ

)
.

Hint: use Theorem 6.6 and the self-bounding property
∑n

i=1(Z – Zi) ≤ Z, Rio
(2002).

12.7. Let Z and (Zi)i≤n be defined as inTheorem 12.5, that is, Z = sups∈T
∑n

j=1 Xj,s and
Zi = sups∈T

∑
j�=i Xj,s. Prove that

logEeλZ

n
≤ logEeλZn

n – 1
.

Hint: use Theorem 6.6 as in Exercise 12.6, but replace Zi by Z̃i = Zi +
lnE exp(λZ) – lnE exp(λZi) (Rio, 2012).Note that it was observed a long time ago
that EZ/n ≤ EZn/(n – 1) (Pollard, 1984).
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12.8. Letting θ(y) = exp(y)φ(–y)/(yφ(y) + y2/2), for y ≥ 0, prove that for y ≥ 0 and
x ≤ y,

exφ(–x) ≤ θ(y)
(
yφ(x) +

x2

2

)
.

Rio (2012) uses this inequality and Exercise 12.7 to refine Theorem 12.5 (see
Exercise 12.9).

12.9. Using the notation of Theorem 12.5, letting E = EZ/n and ṽ = nσ 2 + (2 – E)EZ,
the aim of this exercise is to prove that, for λ > 0,

logEeλ(Z–EZ) ≤ ṽ
(1 – E)2

φ((1 – E)λ).

Note first that for λ ≥ 0 satisfying λṽ ≥ 2n(1 – E), the inequality follows from
the fact that Z ≤ n. Proceed as in the proof of Theorem 12.5, but replace Zi by
Z̃i = Zi + E for each 1 ≤ i ≤ n. Let θ(y) = exp(y)φ(–y)/(yφ(y) + y2/2) and use
Exercise 12.8 to establish that for λ ≥ 0,

φ
(
–λ(Z – Z̃i)

)
eλZ

≤ λθ(λ(1 – E))

(
(1 – E)eλZ + eλZ̃i

[
λ

(
(Z – Z̃i)2

2
– (1 – E)(Z – Z̃i)

)
– (1 – E)

])
.

Follow the pattern of analysis of Theorem11.10 and Exercise 11.17 to establish that
for λ ≥ 0,

E
[
φ
(
–λ(Z – Z̃i)

)
eλZ
] ≤ λθ(λ(1 – E))E

[
(1 – E)eλZ + eλZ̃i

(
λṽ
2n

– (1 – E)
)]

.

Henceforth, assume 0 ≤ λṽ/2n ≤ (1 – E). Use Exercise 12.7 to establish

EeλZ̃i

(
λṽ
2n

– (1 – E)
)
≤
(

λṽ
2n

– (1 – E)
)
E
[
eλZ
] (

1 –
1
n
logEeλ(Z–EZ)

)
,

and that

Ent(eλZ)
EeλZ

≤ nλθ(λ(1 – E))
(
(1 – E) +

(
λṽ
2n

– (1 – E)
)(

1 –
1
n
logEeλ(Z–EZ)

))
.

Letting G(λ) = logEeλ(Z–EZ), prove that for 0 ≤ λ ≤ 2n(1 – E)/ṽ, G satisfies the
differential inequality

λG′(λ) – G(λ) ≤ λθ(λ(1 – E))
(
(1 – E)G(λ) +

λṽ
2

)
.

Solve the differential inequality.Hint: θ(x) is the derivative of log((φ(t) + t/2)/t).
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12.10. (A SUB-OPTIMAL BENNETT-TYPE INEQUALITY) Recall the notation of
Theorem 12.5. Prove that for all λ > 0,

logEeλ(Z–EZ) ≤ vλ
(
eλ – 1

)
/2.

Hint: define Zi, ŝi as in the proof of Theorem 12.5. Starting from Theorem 6.6, use
Exercise 12.6 to establish

Ent(eλZ)

≤ λEeλZ logEeλZ +
n∑
i=1

E
[
eλZiE(i) [eλXi,̂si φ(–λXi,̂si) – φ(λXi,̂si)(λXi,̂si)+

]]
.

Use the fact that exφ(–x) – x+φ(x) ≤ x2/2 for x ∈ R in order to conclude. (SeeRio
(2001, 2002).)

12.11. (SUMS OF INDEPENDENT POSITIVE SEMI-DEFINITE MATRICES) Let X1, . . . ,Xn
be independent random positive semi-definite d× d matrices. Assume that for all
i ≤ n, the operator norm ofXi satisfies ‖Xi‖ ≤ a almost surely. Let Z = ‖∑n

i=1 Xi‖.
Prove that

Var (Z) ≤ aEZ,

and that for all λ ∈ R,

logEeλ(Z–EZ) ≤ (EZ/a)φ(aλ).

Hint: use the fact that ‖∑n
i=1 Xi‖ is self-bounding. (See Tropp 2010a.)

12.12. (SPECTRUM OF A GRAM MATRIX) Let X1, . . . ,Xn be independent identically dis-
tributed random vectors taking values in Rd. The associated Gram matrix G is
an n× n matrix with entries Gi,j = 〈Xi,Xj〉. Let λ1 ≥ · · · ≥ λn be a nonincreas-
ing rearrangement of the eigenvalues of G. Assume that the Xi are almost surely
bounded. Prove Bennett-like concentration inequalities for Z =

∑k
j=1 λj where

1 ≤ k ≤ d. Hint: the nonzero eigenvalues of G are the same as the nonzero
eigenvalues of

∑n
i=1 XiXT

i . Use the Courant–Fisher variational characterization of
eigenvalues to check that Z is a self-bounding function. Then use the results from
Exercise 12.11. (See Shawe-Taylor and Cristianini 2004, and Zwald and Blanchard
2006.)

12.13. Let X1, . . . ,Xn be independent sub-gamma random variables with expectation not
larger thanμ, variance factor smaller than v and scale factor smaller than c (thus, for
t ≥ 0, P{Xi ≥ μ +

√
2vt + ct} ≤ e–t). LetM = max(X1, . . . ,Xn).

Prove that EM2 is not essentially larger than the square of the upper bound
on EM derived in Chapter 2 (Theorem 2.6), namely, for all λ > 0, letting
Hn =

∑n
i=1 1/i, prove that EM ≤ μ +

√
2vHn + cHn,

EM2 ≤ (
μ +

√
2vHn + cHn

)2 + 10v
log n

+
c2π2

3
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and

logEeλM ≤ λ
(
μ + 2

√
vHn + cHn

)
+

λ2(c +
√
v/Hn)2

2(1 – λ(c +
√
v/Hn))

.

Hint: you may assume that there exist independent random variables Y1, . . . , Yn
such that Xi ≤ Yi and P{Yi ≥ μ +

√
2vt + ct} = e–t for all 1 ≤ i ≤ n. In order to

bound the higher moments of max(Y1, . . . , Yn), combine Rényi’s representation
of order statistics (see de Haan and Ferreira (2006, Chapter 2)), the Efron–Stein
inequality and Theorem 6.6. Check the tightness of the bounds by assuming that
X1, . . . ,Xn are indeed gamma-distributed. This exercise shows that the right tail of
the maximum of n independent sub-gamma random variables with scale factor c is
not substantially heavier than the tail of a Gumbel distribution with scale c.

12.14. Let X1, . . . ,Xn be centered, independent sub-gamma random variables, with
variance factor v and scale factor c (i.e. for t ≥ 0, P{Xi ≥

√
2vt + ct} ≤ e–t).

Let τn =
√
2v log n + c log n. Let Z =

∑n
i=1 Xi1{|Xi|≥τn}. Prove that EZ ≤

τn + c +
√
v/(2 log n) and that for 0 ≤ λ ≤ τn/2,

logEeλZ ≤ eλτn + λτn – 1
1 – λτn

and P{Z ≥ t} ≤ 2 exp(–t/(4τn)) for t ≥ 0. Hint: use a quantile coupling argu-
ment: there exists a probability space with random variables X1, . . . ,Xn as above
and independent exponentially distributed random variables Y1, . . . , Yn with |Xi| ≤√
2vYi + cYi for all 1 ≤ i ≤ n, almost surely. Bound log (E exp (λZ)) by the quant-

ity n logE
[
exp

(
λ(
√
2vY1 + cY1)

)
1{Y1≥log n}

]
. This bound should be compared

with those from Exercise 12.13. For small values of λ, they are both of order λτn.
This should not come as a surprise. With overwhelming probability, Z coincides
with max(X1, . . . ,Xn), as there is at most one index 1 ≤ i ≤ n such that |Xi| ≥ τn.
This is a special case of the setting of Lemma 11.16.

12.15. (A COROLLARY OF BOUSQUET’S INEQUALITY) Using the notation of
Theorem 12.5, prove that for all 0 < η ≤ 1, δ > 0, and for all t ≥ 0,

P{Z ≥ (1 + η)EZ + t} ≤ exp
(
–

t2

2(1 + δ)σ 2

)
+ exp

(
–

δt
2(1 + δ)(2/η + 1/3)

)
.

Hint: prove exp(–(1/u + v)) ≤ max(exp(–(λ/u)), exp(–(1 – λ)/v)) for u, v > 0
and λ ∈ [0, 1]. (See Lemma 1 in Adamczak (2008).)

12.16. (SUPREMA OF EMPIRICAL PROCESSES WITH UNBOUNDED SUMMANDS)
Let X1, . . . ,Xn be independent identically distributed random vectors. Assume
that (i) The empirical process is symmetric: for each s ∈ T , Xi,s and –Xi,s
have the same distribution; (ii) There exist independent random variables
(Yi)i≤n such that Yi ≥ maxs∈T |Xi,s| and Yi is sub-gamma with variance factor
σ 2 and scale factor c (by Theorem 2.3, this entails Var (Xi,s) ≤ 8σ 2 + 32c2).



E X E RC I S E S | 361

Let Z = sups∈T
∑n

i=1 Xi,s and let τn =
√
2σ 2 log n + c log n. For each i ≤ n and

s ∈ T , let Vi,s = Xi,s1{|Xi,s|<τn} and Wi,s = Xi,s – Vi,s. Let Z1 = sups∈T
∑n

i=1 Vi,s
and Z2 = sups∈T

∑n
i=1Wi,s. Check that EZ ≥ EZ1 – EZ2, EZ2 ≤ τn(1 + 1/ log n),

and P {Z2 ≥ t} ≤ 2 exp (–t/(8τn)). Check also that for η > 0, ε > 0, t > 0,

P{Z ≥ (1 + η)EZ + t} ≤ P
{
Z1 ≥ (1 + η)EZ1 – (1 + η)EZ2 + (1 – ε)t

}
+P{Z2 ≥ εt}.

Prove that for all 0 < δ < 1, for all t ≥ 0,

P
{
Z ≥ (1 + η)EZ + t

} ≤ exp
(
–

(1 – 2ε)2t2

16(1 + δ)n(σ 2 + 4c2)

)
+ exp

(
–

δ(1 – 2ε)t
2(1 + δ)κτn

)
+ 2 exp

(
–

εt
8τn

)
.

Hint: use the results of Exercises 12.14 and 12.15. Note that the last bound is
trivial if εt ≤ 4τn. This truncation-and-separation approach was popularized by
Hoffmann-Jørgensen (1974). Chapter 6 of Ledoux andTalagrand (1991) describes
the interplay between this approach and concentration of measure. de la Peña and
Giné (1999), Giné, Latała, and Zinn (2000), Adamczak (2008), and Mendelson
(2010) describe further advances in this direction. This exercise is inspired by
Adamczak (2008) who describes more general results and applications.



13

The Expected Value of Suprema
of Empirical Processes

InChapters 11 and 12we studied deviations of suprema of empirical processes around their
expected values and obtained useful, often tight concentration inequalities. A remarkable
feature of these inequalities is that a lot can be said about concentration properties without
knowing what the expected values are. Bounding the expected value of the supremum of
an empirical process is a central object of the study of empirical processes and the pur-
pose of this chapter is to present elements of this rich theory. Interestingly, concentration
inequalities provide an important tool in deriving tight upper bounds for such expectations,
as pointed out below.

We have already faced simple situations when concentration inequalities help derive
upper bounds for suprema of random variables; recall the maximal inequalities of Section
2.5 that, in fact, serve as the basis of some of the arguments to follow.

In Section 13.1 we discuss the perhaps most important basic technique for obtaining
sharp upper bounds for suprema of empirical processes, the so-called chaining argument
(Lemma 13.1). Chaining bounds relate the expected value of the supremumof an empirical
process with metric properties of the set indexing the empirical process. Such inequalities
proved successful in many areas ranging from the general theory of stochastic processes to
statistics. The chaining arguments we present here are not always the sharpest possible and
more sophisticated arguments, such as the so-called “generic chaining” approach, some-
times givemore accurate results. However, chaining still provides simple and useful answers
in many applications. Perhaps the best known bound obtained using classical chaining is
Dudley’s entropy integral bound for the expectation of the supremum of Gaussian pro-
cesses (see Corollary 13.2 below). In Section 13.2 we present Sudakov’s lower bound for
the expected value of the supremum of Gaussian processes which may be regarded as a
partial converse to Dudley’s entropy integral upper bound.

The rest of this chapter describes examples in which chaining and concentration inequal-
ities interact.

Section 13.3 deals with empirical processes indexed by VC-classes. This application does
not fit exactly into the framework of Lemma 13.1. Nevertheless, supplementing chaining
with symmetrization (Lemma 11.4) paves the way to sharp bounds.
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Section 13.4 and Section 13.5 revisit Nemirovski’s inequality already investigated in
Section 11.2. While in Section 11.2 we consider E‖Sn‖2 where Sn =∑n

i=1 Xi with Xi inde-
pendent random vectors with bounded components, in Section 13.4, we are interested in
sums of randommatrices endowedwith the operator norm. Themain result of Section 13.4
is Rudelson’s inequality that establishes an upper bound for the expected operator norm of
Rademacher and Gaussian sums of symmetric matrices.

Section 13.6 takes one step further in the analysis of the Johnson–Lindenstrauss
lemma discussed in Sections 2.9 and 5.6. The Klartag–Mendelson theorem presented here
describes sufficient conditions on themetric properties of a general set which guarantee that
a random projection of the set to a low-dimensional subspace is an approximate isometry,
with high probability.

In Section 13.7 Bousquet’s inequality (Theorem 12.5) is used in an essential way
with techniques known as ‘‘peeling (or slicing) and re-weighting” to obtain bounds for
normalized empirical processes.

In Section 13.8, Theorem 13.19 is put to work. It allows us to derive an approximate
isometry property of the randommapping L2(P) → L2(Pn).

Finally, in Section 13.9we present an application inwhich sharp risk bounds are obtained
for a classification problem in statistical learning theory.

13.1 Classical Chaining

In this section we describe the basic chaining argument. In the simplest version of chain-
ing, one discretizes the set T indexing the stochastic process {Xt : t ∈ T } and the maximal
value supt∈T Xt is approximated by maxima over successively refining discretizations. To
make this formal, we introduce the notion of δ-nets.

Let (T , d) be a totally bounded pseudo-metric space and let δ > 0. A δ-net is a finite set
Tδ ⊂ T with maximal cardinality such that for all s, t ∈ Tδ with s �= t, one has d(s, t) > δ

(i.e. every pair of distinct elements of T is δ-separated).
Let B(t, δ) denote the closed ball of radius δ centered at t. Since Tδ has maximal car-

dinality, the collection of closed balls with radius δ centered at the points of Tδ covers T ,
that is,

T ⊆
⋃
t∈Tδ

B(t, δ).

Note that the cardinalityN (δ, T ) of a δ-net Tδ coincides with the maximal number of dis-
joint closed balls of radius δ/2 that can be packed into T . N (δ, T ) is called the δ-packing
number of T .

A proper δ-covering of T is a finite set Tδ ⊂ T such that

T ⊆
⋃
x∈Tδ

B(x, δ).

Theminimal cardinality of any δ-covering is denoted byN′(δ, T ). It is called the δ-covering
number of T .
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Packing and covering numbers are closely related as one always has

N (2δ, T ) ≤ N′ (δ, T ) ≤ N (δ, T ) .

The second inequality follows by the argument above and the first may also be seen easily.
These quantities reflect the “size” or “massiveness” of the totally bounded set T .

The δ-entropy number H(δ, T ) is defined as the logarithm of the δ-packing number:

H(δ, T ) = logN(δ, T ).

The functionH(·, T ) is called themetric entropy of T .
The following lemma is at the core of the chaining argument. To avoid worrying about

measurability issues, we assume that T is a finite set. One may extend all results of this
chapter to processes indexed by separable metric spaces by standard arguments that we do
not detail here.

Lemma 13.1 Let T be a finite pseudometric space and let (Xt)t∈T be a collection of random
variables such that for some constants a, v, c > 0,

logEeλ(Xt–Xt′ ) ≤ aλd(t, t′) +
vλ2d2(t, t′)

2 (1 – cλd(t, t′))

for all t, t′ ∈T and all 0 < λ < (cd(t, t′))–1. Then, for any t0∈T ,

E
[
sup
t∈T

Xt – Xt0

]
≤ 3aδ + 12

√
v
∫ δ/2

0

√
H (u, T )du + 12c

∫ δ/2

0
H (u, T ) du

where δ = supt∈T d(t, t0).

Proof For any integer j, let δj = δ2–j and let Tj be a δj-net of T . By the definition of the
metric entropy, for any integer jwe can define a mapping�j : T → Tj such that

d
(
t,�j(t)

) ≤ δj for all t ∈ T .

Since T is finite, there exists a positive integer J such that for all t ∈ T ,

Xt = X�0(t) +
J∑
j=0

(
X�j+1(t) – X�j(t)

)
.

Moreover, by the definition of δ, we may assume that T0 = {t0}, so �0(t) = t0 and
therefore

E
[
sup
t∈T

Xt – Xt0

]
≤

J∑
j=0

E
[
sup
t∈T

X�j+1(t) – X�j(t)

]
.

Now observe that for every integer j,∣∣{(�j(t),�j+1(t)
)
: t ∈ T

}∣∣ ≤ e2H(δj+1,T )
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and that by the triangle inequality, for any t ∈ T ,

d
(
�j(t),�j+1(t)

) ≤ 3δj+1.

Hence, by the maximal inequality of Corollary 2.6,

E
[
sup
t∈T

X�j+1(t) – X�j(t)

]
≤ 3

(
aδj+1 + 2δj+1

√
vH(δj+1, T ) + 2cδj+1H(δj+1, T )

)
.

Hence, summing over j,

E
[
sup
t∈T

Xt – Xt0

]
≤ 3a

J+1∑
j=1

δj + 6
J+1∑
j=1

δj

(√
vH(δj, T ) + cH(δj, T )

)

≤ 3aδ + 12
√
v
∫ δ/2

0

√
H(u, T )du + 12c

∫ δ/2

0
H(u, T )du

where at the last step we used the fact that metric entropyH(u, T ) is nonincreasing as
a function of u. �

Letting a = c = 0, Lemma 13.1 allows us to recover Dudley’s classical bound for suprema
of centered processes with sub-Gaussian increments.

Corollary 13.2 (DUDLEY’S ENTROPY INTEGRAL) Let T be a finite pseudometric space and
let (Xt)t∈T be a collection of random variables such that

logEeλ(Xt–Xt′ ) ≤ λ2d2 (t, t′)
2

for all t, t′ ∈T and all λ > 0. Then for any t0∈T ,

E
[
sup
t∈T

Xt – Xt0

]
≤ 12

∫ δ/2

0

√
H(u, T )du,

where δ = supt∈T d(t, t0).

This entropic bound is often tight, though in some situations it fails to give sharp
bounds (see Exercises 13.4 and 13.5). Note that it also provides an upper bound for
suprema of Rademacher processes: if Z = supt∈T

∑n
i=1 αi, tεi where the εi are inde-

pendent Rademacher variables, then the condition of Corollary 13.2 is satisfied with
d2(t, t′) =

∑n
i=1(αi, t – αi, t′)2.

Chaining is by no means the only possible technique for obtaining upper bounds for the
expected supremum of empirical processes. In fact, chaining does not always lead to sharp
bounds and may often be by-passed by exploiting the special structure of the problem at
hand. In the exercise section several such cases are described.
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For an example in which Lemma 13.1 fails to provide the best bounds, consider a
Gaussian chaos of order 2 defined as follows. LetX = (X1, . . . ,Xn) be a vector of independ-
ent standard normal random variables and let T be a finite collection of symmetricmatrices
A = (ai, j)n×n with ai,i = 0 for i = 1, . . . , n. Then

Z = sup
A∈T

XTAX

is the supremum of a Gaussian chaos process indexed by T . From the analysis of
Example 2.12, we find that for any A,B ∈ T ,

logEeλ(X
TAX–XTBX) ≤ λ2‖A – B‖2HS

1 – 2λ‖A – B‖

where ‖A‖HS =
(∑n

i=1 μ2
i
)1/2 is the Hilbert–Schmidt norm of the matrix A (with eigenval-

uesμ1, . . . ,μn) and ‖A‖ = maxi |μi| is the operator norm.
Let HHS(δ, T ) denote the δ-entropy of T with respect to the Hilbert–Schmidt norm,

and let Hop(δ, T ) denote the δ-entropy of T with respect to the operator norm. Let δHS

and δop be the diameters of T under the Hilbert–Schmidt and the operator norms. Since
‖A‖ ≤ ‖A‖HS, we may invoke Lemma 13.1 to establish the bound

EZ ≤ 12
∫ δHS/2

0

(√
2HHS(u, T ) + 2HHS(u, T )

)
du.

However, this upper boundmay be improved by a technique known as “generic chaining” to

EZ ≤ κ

(∫ δHS/2

0

√
2HHS(u, T )du +

∫ δop/2

0
2Hop(u, T )du

)
where κ > 0 is a universal constant. The proof of this bound is left as a guided exercise
(Exercise 13.10). In Section 13.3 we discuss another example in which raw chaining gives
suboptimal bounds, though with a simple additional trick one may obtain much tighter
bounds.

Note that even in the case of linear Gaussian processes, chaining may not give optimal
results. An example is when the process is indexed by an ellipsoid (see Exercises 13.5, 13.19,
and 13.20 for some details).

13.2 Lower Bounds for Gaussian Processes

In this section we describe lower bounds for the expected value of the supremum of a
Gaussian process. We start with Slepian’s lemma, a classical result that relates the maxima
of two Gaussian vectors. This result is at the basis of Sudakov’s lower bound, a counterpart
of Corollary 13.2 for Gaussian processes.
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Theorem 13.3 (SLEPIAN’S LEMMA) Let X = (X1, . . . ,Xn) and Y = (Y1, . . . , Yn) be
Gaussian random vectors with EXi = EYi for all i = 1, . . . , n. Let δXi,j = E[(Xi – Xj)2] and
δYi,j = E[(Yi – Yj)2] for all i, j ∈ {1, . . . , n}. If δXi,j ≤ δYi,j for all i, j ∈ {1, . . . , n}, then

E max
i=1,...,n

Xi ≤ E max
i=1,...,n

Yi.

If |δXi,j – δYi,j| ≤ ε for all i, j ∈ {1, . . . , n}, then∣∣∣∣E max
i=1,...,n

Xi – E max
i=1,...,n

Yi

∣∣∣∣ ≤ √
ε log n.

Note that by taking Y = 0, we recover the inequality for the expected maximum of n
Gaussian random variables derived in Section 2.5. While the maximal inequality holds for
sub-Gaussian variables, Slepian’s lemma uses the Gaussian property in an essential way.

The proof crucially uses the following property of Gaussian vectors: If F : Rn → R

is continuously differentiable with moderate growth in the sense that for any a > 0,
lim‖x‖→∞ f (x)e–a‖x‖2 = 0 and X = (X1, . . . ,Xd) is a centered Gaussian vector, then for any
i = 1, . . . , n,

E
[
XiF(X)

]
=

n∑
j=1

E[XiXj]E
∂F
∂xj

(X),

see Exercise 13.3. If F = ∂h/∂xi, this integration-by-parts formula can be rewritten as

E
[∇h(X)TX

]
=

n∑
i=1

E
[
Xi

∂h
∂xi

(X)
]

=
n∑
i=1

n∑
j=1

E[XiXj]E
∂2h

∂xi∂xj
(X)

= trace
(
E[XXT]E∇2h(X)

)
.

Proof Without loss of generality, we may assume that X and Y are independent. Let λ > 0
and let f : Rn → R be defined as

f (x1, . . . , xn) =
1
λ
log

( n∑
i=1

eλxi
)
.

Let X̃i = Xi – EXi and Ỹi = Yi – EYi for i = 1, . . . , n. Introduce the covariance matrices
σ X and σ Y (σ X

i,j = E[X̃iX̃j] and σ Y
i,j = E[ỸiỸj] for 1 ≤ i, j ≤ n). For 0 ≤ t ≤ 1, define

Zt = (Zt,1, . . . ,Zt,n)T as a random vector with components

Zt,i = X̃i
√
1 – t + Ỹi

√
t + EXi.
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The function h(t) = Ef (Zt) defined for t ∈ [0, 1] is differentiable with derivative

h′(t) = E

[
∇f (Zt)T

(
Ỹ

2
√
t
–

X̃
2
√
1 – t

)]
.

As X̃ and Ỹ are independent, working conditionally on X̃ = x̃, using the integration-by-
parts formula with respect to the Gaussian vector Ỹ leads to

E

[
∇f

(
x̃
√
1 – t + Ỹ

√
t + EX

)T Ỹ
2
√
t

]

=
1

2
√
t
trace

(
σ YE

[√
t∇2f

(
x̃
√
1 – t + Ỹ

√
t + EX

)])
=
1
2
trace

(
σ YE

[
∇2f

(
x̃
√
1 – t + Ỹ

√
t + EX

)])
.

Taking expectation with respect to X̃ and proceeding in a similar way to transform
E
[
∇f (Zt)T X̃

2
√
1–t

]
, we get

h′(t) =
1
2
E
[
trace

(∇2f (Zt)
(
σ Y – σ X))].

Let p(z) = ∇f (z). Then straightforward calculation shows that theHessian of f may
be written as

∇2f (z) = λ diag (p(z)) – λp(z)p(z)T.

As
∑n

i=1 pi(z) = 1,

trace
(
diag (p(z)) (σ Y – σX)

)
=

n∑
i=1

pi(z)
(
σ Y
i,i – σ X

i,i
)

=
1
2

∑
1≤i,j≤d

pi(z)pj(z)
(
σ Y
i,i – σ X

i,i + σ Y
jj – σ X

j,j

)
.

Substituting the right-hand side into the expansion of trace
(∇2f (z)

(
σ Y – σX

))
leads to

trace
(∇2f (z)

(
σ Y – σX))

=
λ

2

∑
1≤i,j≤n

pi(z)pj(z)
(
σ Y
i,i – σX

i,i + σ Y
jj – σ X

j,j – 2σ
Y
i,j + 2σX

i,j

)
=

λ

2

∑
1≤i,j≤n

pi(z)pj(z)
(
δYi,j – δXi,j

)
=

λ

2
trace

(
p(z)p(z)T

(
δY – δX

))
.
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If δY – δX ≥ 0, then h′(t) ≥ 0 and h(1) = Ef (Y) ≥ Ef (X) = h(0). This holds for all
choices of λ ≥ 0.

Since

max
i=1,...,n

xi ≤ 1
λ
log

( n∑
i=1

eλxi
)
≤ 1

λ
log n + max

i=1,...,n
xi,

the first statement of the theorem follows by taking λ → ∞.
On the other hand, if 0 ≤

∣∣∣δYi,j – δXi,j

∣∣∣ ≤ ε for all 1 ≤ i, j ≤ n, then

∣∣Ef (Y) – Ef (X)∣∣ = ∣∣∣∣∫ 1

0
h′(s)ds

∣∣∣∣
≤ λ

4

∫ 1

0
E
∣∣trace (p(Zs)p(Zs)T

(
δY – δX

))∣∣ ds
≤ λ

4
ε.

Combining this with the inequalities linking f (x) and maxi=1,...,n xi, we have∣∣∣∣E max
i=1,...,n

Yi – E max
i=1,...,n

Xi

∣∣∣∣ ≤ λε

4
+
log n
λ

.

Optimizing over λ, we obtain∣∣∣∣E max
i=1,...,n

Yi – E max
i=1,...,n

Xi

∣∣∣∣ ≤ √
ε log n.

�

We are now prepared to prove a lower bound that complements Dudley’s bound
(Corollary 13.2).

Theorem 13.4 (SUDAKOV’S LOWER BOUND) Let T be a finite set and let (Xt)t∈T be a
Gaussian vector with EXt = 0. Then

E sup
t∈T

Xt ≥ 1
2

min
t�=t′∈T

√
E
[
(Xt – Xt′)2

]
log |T |.

Proof Let (Zt)t∈T be independent standard Gaussian random variables. Let

δ = min
t�=t′

(
E
[
(Xt – Xt′)

2])1/2
and

Yt =
δ√
2
Zt , for every t ∈ T .
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As for every t �= t′ ∈ T , E
[
(Yt – Yt′)2

]
= δ2 ≤ E

[
(Xt – Xt′)2

]
, by Theorem 13.3,

δE sup
t∈T

Zt ≤
√
2E sup

t∈T
Xt .

On the other hand,

E sup
t∈T

Zt ≥ 1√
2

√
log |T |.

The proof of this last statement is left as an exercise (Exercise 13.6). �

Sudakov’s lower bound may be rewritten in terms of metric entropy as follows. Let
(Xt)t∈T be centered Gaussian random variables indexed by the finite set T . Let d be the
pseudo-metric on T defined by d(t, t′)2 = E[(Xt – Xt′)2]. Then by Theorem 13.4, for all
ε > 0 smaller than the diameter of T ,

E sup
t∈T

Xt ≥ 1
2
ε
√
H(ε, T ).

Exercise 13.4 provides an example where Sudakov’s lower bound is tight while Dudley’s
entropy integral upper bound is not. Note that Slepian’s lemma may also be used to derive
upper bounds for the expected value of the supremum of some Gaussian processes such as
the largest eigenvalue of some randommatrices (see Exercises 13.7 and 13.8) (Fig. 13.1).

H ( ε, )

ε

√

Figure 13.1 Dudley’s entropy bound is proportional to the area under the curve
√
H(ε,T ), while

Sudakov’s lower bound is the area of the largest rectangle that can be fitted under the same curve
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13.3 Chaining and VC-Classes

In this section we are concerned with uniform deviations of relative frequencies from the
corresponding probabilities. To be more precise, let X be some set endowed with a prob-
ability measure P and let X1, . . . ,Xn be independent random variables taking values in X ,
distributed according to P.

Let A = {At : t∈T } denote a collection of (measurable) subsets of X indexed by a
(finite) set T . We are interested in uniform deviations of empirical averages, that is, in the
behavior of the random variable

sup
t∈T

1
n

n∑
i=1

(1{Xi∈At} – P(At)).

For t∈T , denote Zt = n–1/2
∑n

i=1(1{Xi∈At} – P(At)) and

Z = sup
t∈T

Zt .

We may introduce a pseudo-metric d on T defined by

d(t, t′) =
√
P{1{Xi∈At} �= 1{Xi∈At′ }}.

Then for all t, t′ ∈T , Var (Zt – Zt′) ≤ d2(t, t′) and it follows immediately from Bernstein’s
inequality that

logEeλ(Zt–Zt′ ) ≤ λ2d2(t, t′)
2(1 – λ/

√
n)
.

This bound may be used to apply Lemma 13.1. However, this simple argument may be
improved by a simple symmetrization argument that we outline next.

A key ingredient of this approach is the notion of universal entropy. For δ > 0, and a
probability measure Q on X , let N(δ,A,Q) denote the maximal cardinality N of a subset
{t, . . . , tN} of the index set T such that Q(Ati&Atj) > δ2 for every i �= j (here A&B is the
symmetric difference of A and B). The universal δ-metric entropy (also called Koltchinskii–
Pollard entropy) ofA is defined by

H(δ,A) = sup
Q

logN(δ,A,Q)

where the supremum is taken over the set of all probability measures Q concentrated on
some finite subset ofX .

Lemma 13.5 Let A = {At : t ∈ T } be a countable class of measurable subsets of X and let
X1, . . . ,Xn be independent random variables taking values inX , with common distribution
P. Assume that for some σ > 0,

P(At) ≤ σ 2 for every t ∈ T .
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Let

Z = n–1/2 sup
t∈T

n∑
i=1

(1{Xi∈At} – P(At))

and denote Dσ = 6
∑∞

j=0 2
–j
√
H
(
2–(j+1)σ ,A

)
. If σ 2 ≥ D2

σ /(5n), then

EZ ≤ 3σDσ .

The same upper bound is valid for Z– = n–1/2 supt∈T
∑n

i=1(P(At) – 1{Xi∈At}).

Proof By the symmetrization inequalities of Lemma 11.4,

E sup
t∈T

n∑
i=1

(1{Xi∈At} – P(At))

≤ 2E

[
E

[
sup
t∈T

n∑
i=1

εi1{Xi∈At}

∣∣∣∣X1, . . . ,Xn

]]
,

where ε1, . . . , εn are independent Rademacher variables. Define the random variable

δ2n = max

(
sup
t∈T

1
n

n∑
i=1

1{Xi∈At}, σ
2

)
.

Clearly, δ2n ≤ σ 2 + Z/
√
n. As a Rademacher sum is sub-Gaussian, we may use

Lemma 13.1 to obtain

EZ≤6E

⎡⎣√δ2n

∞∑
j=0

2–j
√
H (2–j–1δn,A)

⎤⎦ ≤ 6
√
Eδ2n

∞∑
j=0

2–j
√
H
(
2–(j+1)σ ,A

)
,

where we use the fact thatH(δ,A) is a nonincreasing function of δ. Thus, we have

EZ ≤ Dσ

√
σ 2 + EZ/

√
n.

Solving this quadratic inequality for EZ, we get

EZ ≤ D2
σ

2
√
n

(
1 +

√
1 +

4σ 2n
D2

σ

)
.

When σ 2 ≥ D2
σ /(5n), the right-hand side may be bounded further by 3σDσ , as

announced.
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To bound EZ–, we may use the inequality just obtained: by the same argument as
above,

EZ– ≤ Dσ

√
σ 2 + EZ/

√
n.

Under the condition σ 2 ≥ D2
σ /(5n), EZ/

√
n ≤ 3σDσ /

√
n ≤ 3

√
5σ 2, and therefore

EZ– ≤ σDσ

√
1 + 3

√
5 ≤ 3σDσ . �

The universal entropy appearing in the bound of Lemma 13.5 may be estimated in an
elegant way in terms of the combinatorial notion of the VC dimension of the classA that we
already introduced in Section 3.3. Recall the definition: for an vector x = (x1, . . . , xn) of n
points ofX , the trace ofA on x is defined by

tr(x) = {A ∩ {x1, . . . , xn} : A ∈ A} .

The VC dimension D(x) of A (with respect to x) is the cardinality k of the largest sub-
set {xi1 , . . . , xik} of {x1, . . . , xn} for which 2k = |tr(xi1 , . . . , xik)|. A is called a VC class if

V def= supn≥1 supx∈X n D(x) < ∞. V is called the VC dimension ofA.
The next lemma shows how the VC dimension controls the universal entropy.

Lemma 13.6 (HAUSSLER’S VC BOUND FOR UNIVERSAL ENTROPY) Let A denote a VC
class of subsets ofX with VC dimension V. For every positive δ > 0,

H(δ,A) ≤ 2V log(e/δ) + log(e(V + 1)) ≤ 2V log(e2/δ).

The proof of this lemma, which we do not reproduce here, relies on delicate combinator-
ial properties of the trace of a VC class on a finite sample. A slightly weaker but much easier
version is left to the reader as a guided exercise (Exercise 13.11).

In Exercises 13.16 and 13.15, other ways of bounding the universal entropy are shown.
Combining Lemma 13.5 and Haussler’s bound, we immediately obtain the following.

Theorem 13.7 Recall the notation of Lemma 13.5. Assume that A is a VC class with VC
dimension V. Suppose supt∈T P(At) ≤ σ 2. Then

max (EZ,EZ–) ≤ 72σ

√
V log

4e2

σ

provided that σ ≥ 24
√
V log (4e2/σ ) /(5n).

Proof ByHaussler’s bound, the quantityDσ introduced in Lemma13.5may be bounded by

Dσ ≤ 24

√
V log

4e2

σ
. �
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Note that the upper bound depends on the sampling distribution P only through
the condition σ 2 ≥ supt∈T P(At). If we are ready to upper bound σ by 1, we obtain a
distribution-free bound.

Exercise 13.18 provides an example in which the factor
√
log(e/σ ) in the upper bound

can be dropped. Exercises 13.15 and 13.16 describe possible generalizations and refine-
ments of Theorem 13.7.

13.4 Gaussian and Rademacher Averages
of SymmetricMatrices

In this section we study norms of certain random matrices. More precisely, we consider
Gaussian andRademacher sums of symmetricmatrices and investigate the behavior of their
operator norm. Since such an operator norm may be considered as the supremum of a
stochastic process, one may be tempted to use chaining. However, it is possible to obtain
much sharper bounds using the specific features of the process. Recall that the operator
norm of a symmetric d× dmatrixM is defined by ‖M‖ = supu∈Rd:‖u‖2≤1 |u

TMu|.

Theorem 13.8 (RUDELSON’S INEQUALITY) Let A1, . . . ,An be symmetric d× d
matrices. Let X1, . . . ,Xn be independent standard Gaussian random variables. Let
Z = ‖∑n

i=1 XiAi‖. If σ 2 =
∥∥∑n

i=1 A
2
i

∥∥, then
Var (Z) ≤ σ 2 and EZ ≤

√
2 log(2d)σ .

The theorem also remains valid if the Gaussian coefficients X1, . . . ,Xn are replaced by
independent Rademacher random variables. The details of the easy modification are left to
the reader.

Recall that any symmetric matrix A can be diagonalized in an orthogonal basis, that is,
there exists an orthogonal matrix O and diagonal matrix D with real diagonal coefficients
such thatA = ODOT . Then if f is a real-valued function defined on an interval that contains
all eigenvalues of A, we may define the matrix f (A) as f (A) = Of (D)OT , where f (D) is the
diagonal matrix computed by applying f to each diagonal coefficient ofD.
The proof of the bound for the variance is an easy corollary of the Gaussian Poincaré

inequality. The non-trivial part is the bound for the expectation. A key ingredient of the
proof of this second bound is theGolden–Thompson inequality (see Exercise 13.29)which
implies that for symmetric matrices A and B,

trace (exp(A + B)) ≤ trace (exp(A) exp(B)).

This inequality allows us to bound the moment-generating function of the norm of∑n
i=1 XiAi and proceed with an argument similar to the one used in Section 2.5 to bound

the expected maximum of sub-Gaussian random variables.

Proof The bound for the variance follows from the Gaussian Poincaré inequality which
implies that the variance of the maximum of centered Gaussian variables is always
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bounded by the maximum of the variances (see Exercise 3.24 and also Theorem 5.8).
But Zmay be represented as the supremum of a Gaussian process, since

Z =

∥∥∥∥∥
n∑
i=1

XiAi

∥∥∥∥∥ = sup
u∈Rd :‖u‖2≤1

∣∣∣∣∣uT
n∑
i=1

XiAiu

∣∣∣∣∣.
This implies

Var (Z) ≤ sup
u∈Rd :‖u‖2≤1

Var

(
n∑
i=1

XiuTAiu

)
= sup

u∈Rd:‖u‖2≤1

n∑
i=1

(
uTAiu

)2.
Now, let Ai =

∑d
j=1 λi, j gi, j gTi, j where (gi,j)j=1,...,d is an orthonormal family of eigen-

vectors of Ai and (λi, j)j=1,...,d is the sequence of corresponding eigenvalues. For any
u ∈ Rd with ‖u‖2 ≤ 1,

n∑
i=1

(
uTAiu

)2 =
n∑
i=1

⎛⎝ d∑
j=1

λi,j(uTgi, j)2

⎞⎠2

≤
n∑
i=1

⎛⎝ d∑
j=1

λ2
i, j(u

Tgi, j)2

⎞⎠
=

n∑
i=1

(
uTA2

i u
)

≤
∥∥∥∥∥

n∑
i=1

A2
i

∥∥∥∥∥,
where the first inequality follows from Jensen’s inequality and the fact that∑d

j=1(u
Tgi, j)2 = 1 as ‖u‖2 ≤ 1 and the vectors (gi, j)j=1,...,d form an orthonormal basis

ofRd. This proves the first inequality.
To prove the bound for the expected value, denoteM =

∑n
i=1 XiAi. The basic idea is

similar to themaximal inequality ofTheorem2.5. To obtain an upper bound forE‖M‖,
we bound the exponential ofE‖M‖, via Jensen’s inequality, by themoment-generating
function of ‖M‖. Let s > 0 be a parameter to be optimized later. Then

esE‖M‖ ≤ Ees‖M‖ (by Jensen’s inequality)

= Eesmaxi=1,...,d |λi(M)|

= E max
i=1,...,d

max
(
esλi(M), e–sλi(M)

)
≤ 2E trace (exp(sM)).

We now use the Golden–Thompson inequality to bound E trace (exp(sM)).
To this end, introduce the matrix D0 = s2

∑n
i=1 A

2
i /2 and, recursively, Dj+1 =

Dj + sXj+1Aj+1 – s2/2A2
j+1 for j = 1, . . . , n. Thus,Dn = sM. Note that, using the fact that

the Xi are standard Gaussian random variables,
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E exp
(
sXjAj – s2A2

j /2
)

is the identity matrix. For every j = 1, . . . , n,

E trace
(
exp(Dj+1)

)
= E trace

(
exp

(
Dj + sXj+1Aj+1 – s2A2

j+1/2
))

≤ E
[
trace

(
exp(Dj)

)
exp

(
sXj+1Aj+1 – s2A2

j+1/2
)]

(by the Golden–Thompson inequality)

= trace
(
E
[
exp(Dj) exp

(
sXj+1Aj+1 – s2A2

j+1/2
)])

(by linearity of the trace)

= trace
(
E exp(Dj)E exp

(
sXj+1Aj+1 – s2A2

j+1/2
))

(by independence)

= trace
(
E exp(Dj)

)
= E trace

(
exp(Dj)

)
.

Combining these inequalities,

E trace (exp(sM)) = E trace (exp(Dn))

≤ E trace (exp(D0))

= trace

(
exp

(
s2

n∑
i=1

A2
i /2

))

≤ d exp

(
s2
∥∥∥∥∥

n∑
i=1

A2
i

∥∥∥∥∥ /2
)
.

Putting everything together, we have

exp (sE ‖M‖) ≤ 2d

(
exp

(
s2
∥∥∥∥∥

n∑
i=1

A2
i

∥∥∥∥∥ /2
))

= 2des
2σ 2/2.

Taking logarithms, dividing both sides by s, and optimizing over s leads to the desired
result. �

We emphasize that once one has a good bound for the expected value of
∥∥∑n

i=1 XiAi
∥∥, it

is easy to obtain bounds that hold with high probability. Indeed, from Theorem 5.6 we get,
without further work,

P
{
Z ≥ t +

√
2 log(2d)σ

}
≤ e–t

2/(2σ 2)
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for all t > 0. Also, apart from the variance bound given in the theorem, we have
(Var (Z))1/2 ≤ EZ by Exercise 5.17.

Equipped with Rudelson’s inequality it is easy to obtain a random-matrix version of
Theorem 11.2 where the �d∞ norm is replaced by the operator norm for d× dmatrices.

Corollary 13.9 Let X1, . . . ,Xn be independent random variables taking their values in the
space of d× d symmetric matrices such that they are symmetric (i.e. –Xi has the same
distribution as Xi). Let Sn =

∑
i=1 Xi and�2 = E‖∑n

i=1 X
2
i ‖. Then

E
[‖Sn‖2] ≤ 2(1 + log(2d))�2.

The proof parallels the proof of Theorem11.2, but Rudelson’s inequality replaces Corollary
2.6 when there is a need to bound E

[‖∑n
i=1 εiXi‖ | X1, . . . ,Xn

]
.

13.5 Variations of Nemirovski’s Inequality

In Section 11.2, we consider norms of sums of Rd-valued independent random variables.
However, while Nemirovski’s inequality (Theorem 11.2) concerns the �∞-norm, we use
here chaining arguments to derive bounds for the �p norm for p ≥ 1.

The setup is as follows: let X1, . . . ,Xn be independent random vectors in Rd with
EXi = 0 and let

Sn =
n∑
i=1

Xi.

In Section 11.2 we obtained upper bounds for E‖Sn‖2∞. Here we deal with �p norms and
derive bounds for E‖Sn‖2p for p ≥ 1.

The key to our approach is to represent the norm as the supremum of an empirical pro-
cess. Indeed, if q = p/(p – 1) (with q = ∞ for p = 1) and Bq = {x ∈ R : ‖x‖q ≤ 1} is the
unit ball under the �q norm, then we may write

‖Sn‖p = sup
t∈Bq

n∑
i=1

〈t,Xi〉

where 〈x, y〉 denotes the inner product inRd.
Based on this representation, it is natural to introduce the weak variance

�2
p = E sup

t∈Bq

n∑
i=1

〈t,Xi〉2.

Then by Theorem 11.1, Var (‖Sn‖p) ≤ 2�2
p . The next theorem shows that E‖Sn‖2p may

also be bounded in terms of the weak variance.

Theorem 13.10 Let X1, . . . ,Xn be independent zero-mean random vectors in Rd and let
Sn =

∑n
i=1 Xi. Then for all p ≥ 1,

E ‖Sn‖2p ≤ 578 d�2
p .
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We need the following estimate of the metric entropy of unit balls whose proof is
left as an exercise (Exercise 13.22).

Lemma13.11 For all q ≥ 1 and for all u ∈ (0, 1], the metric entropyH(u,Bq) of the unit ball
Bq under the �q metric satisfies

H(u,Bq) ≤ d log
(
1 +

2
u

)
.

Proof of Theorem 13.10. Writing

E‖Sn‖2p = Var (‖Sn‖p) +
(
E‖Sn‖p

)2
and recalling that Var (‖Sn‖p) ≤ 2�2

p , it suffices to bound E‖Sn‖p. We do this by
symmetrization, followed by chaining.

By the symmetrization inequalities of Lemma 11.4,

E‖Sn‖ ≤ 2E sup
t∈Bq

n∑
i=1

εi〈t,Xi〉,

where ε1, . . . , εn are independent Rademacher variables.
Working conditionally on theXi, supt∈Bq

∑n
i=1 εi〈t,Xi〉 is the supremumof a process

indexed by Bq. This process has sub-Gaussian increments as the following argument
shows: by Hoeffding’s inequality, for all λ > 0 and t, t′ ∈ Bq,

E

[
exp

(
λ

n∑
i=1

εi〈t – t′,Xi〉
) ∣∣∣X1, . . . ,Xn

]

≤ exp

(
λ2

2

n∑
i=1

〈t – t′,Xi〉2
)

= exp

(
λ2

2
‖t – t′‖2q

n∑
i=1

〈
t – t′

‖t – t′‖q ,Xi

〉2)

≤ exp

(
λ2

2
‖t – t′‖2q sup

t∈Bq

n∑
i=1

〈t,Xi〉2
)
.

Now we may use Dudley’s bound (Corollary 13.2) conditionally on X1, . . . ,Xn, to
conclude that

E

[
sup
t∈Bq

n∑
i=1

εi〈t,Xi〉
∣∣∣X1, . . . ,Xn

]
≤
(
sup
s∈Bq

n∑
i=1

〈s,Xi〉2
)1/2

12
∫ 1

0

√
H(u,Bq)du.
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By Jensen’s inequality,

(E [‖Sn‖])2 ≤ 4

⎛⎝E

⎡⎣(sup
s∈Bq

n∑
i=1

〈s,Xi〉2
)1/2

12
∫ 1

0

√
H
(
u,Bq

)
du

⎤⎦⎞⎠2

≤ 576�2
p

(∫ 1

0

√
H(u,Bq)du

)2

.

Combining this with the fact that Var (‖Sn‖2p) ≤ 2�2
p ,

E‖Sn‖2 ≤
(
2 + 576

(∫ 1

0

√
H
(
u,Bq

)
du
)2
)

�2
p

≤ �2
p

(
2 + 576

∫ 1

0
H
(
u,Bq

)
du
)
.

By Lemma 13.11, the entropy integral can be upper bounded by d log(33/22). �

Recall that in the bound of Theorem 11.2 for the �∞ norm, the dependence of the upper
bound in d is only logarithmic. This suggests that the bound of Theorem 13.10 may not be
tight at least for large values of p. Further variations on Nemirovski’s inequality for other
finite dimensional normed spaces are described in Exercises 13.23, 13.24, and 13.25.

13.6 RandomProjections of Sparse and Large Sets

In this section we return to the Johnson–Lindenstrauss problem already studied in
Sections 2.9 and 5.6. First recall the setup: we consider A⊂RD where D is a large
positive integer. Suppose d<D (typically d�D) and define the random map W :
RD → Rd that assigns to each α = (α1, . . . ,αD) ∈ RD the vector W(α) = (1/

√
d)

(W1(α), . . . ,Wd(α)) ∈ Rd with

Wi (α) =
D∑
j=1

αjXi, j

where Xi,1, . . . ,Xi,d are independent copies of a random variable X satisfying EX = 0 and
Var (X) = 1. In this section we only consider the case when X is either a standard Gaussian
or a Rademacher random variable. The Johnson–Lindenstrauss lemma (Theorem 2.13)
states that if A is finite, then after applying the random projectionW , the pairwise distances
between elements of A are preserved up to a factor 1± ε with high probability, if d is of the
order of ε–2 log |A|. As we argued in Section 5.6, this result depends only on the cardinality
of A and it does not take the structure of the set A into account. In particular, it is vacuous if
A is an infinite set. There we extended the basic Johnson–Lindenstrauss lemma to take the
structure of the set A into account. First we briefly recall this result.
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The randommapW is called an ε-isometry on A if∣∣∣∣‖W(α) –W(α′)‖2
‖α – α′‖2 – 1

∣∣∣∣ ≤ ε for all distinct α,α′ ∈ A.

Here ‖ · ‖ denotes the Euclidean norm. The set T of normalized differences of elements of
A plays a crucial role in the analysis.

T =
{

a – a′

‖a – a′‖ , (a, a
′) ∈ A× Awith a �= a′

}
.

This set indexes the empirical processes whose suprema are in the focus of our attention:

V = sup
α∈T

(∥∥W (α)
∥∥2 – 1) and V ′ = sup

α∈T

(
1 –

∥∥W (α)
∥∥2).

In particular, Theorem 5.10 shows that when the quantity

� = d (max(EV ,EV ′))2

is small, then onemay project to low-dimensional spaces without significantly changing the
metric structure of the set. More precisely, we showed that if d ≥ 20(� + log(2/δ))ε–2,
then the randommapW is an ε-isometry on Awith probability at least 1 – δ.

WhenA is finite, by Corollary 2.6,� ≤ 32 log |A| as long as d ≥ log |A|. The goal of this
section is to obtain sharp bounds for� taking the finer structure of A into account. In par-
ticular,�may be finite even when A is infinite. At first sight, it might appear to be a routine
task to relate � with some notion of “richness” of the index set T. Indeed, the process
d(
∥∥W(α)

∥∥2 – 1) and its opposite fit within the scope of Lemma 13.1 (see Exercise 13.26).
However, one can do much better by taking into account some specific features of the
empirical processes under consideration. Indeed, for all α ∈ T, ‖W(α)‖2 – 1 is centered
and its variance does not depend on α.

Note that Theorem 5.10 is stated forGaussian randomprojections but aminormodifica-
tion of its proof reveals that it remains valid when theXi,j are Rademacher random variables.
In the sequel we restrict our attention to these cases.

A remarkable feature of the Johnson–Lindenstrauss lemma and Theorem 5.10 is that
the dimension D of the set A does not play any role. Indeed, we could have formulated
Theorem 5.10 so as to accommodate separable Hilbert spaces. The same remark goes for
most of the rest of the section. However, for the ease of exposition, we present the results in
the finite-dimensional context.

In order to obtain sharper bounds for EV and EV ′ than one could achieve by ordinary
chaining, we use the following “splitting” argument. It is a key ingredient in the proof of
both Theorems 13.13 and 13.15 below.

Lemma 13.12 Let T ⊂ RD denote a finite set of vectors of unit Euclidean norm. Let
W : RD → Rd be the random linear map defined above. Let δ ∈ (0, 1) and let Tδ be a
δ-net of T. Let

DδT =
{
α – α′ : ‖α – α′‖ ≤ δ,α,α′ ∈ T

}
.
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Let V and V ′ be defined as above. Then, for all θ > 0,

EV ≤ (1 + θ)E sup
α∈Tδ

(∥∥W (α)
∥∥2 – 1) + (1 + 1

θ

)
E sup

α∈DδT

∥∥W(α)
∥∥2 + θ ,

and for all θ ∈ (0, 1),

EV ′ ≤ (1 – θ)E sup
α∈Tδ

(
1 –

∥∥W (α)
∥∥2) + ( 1

θ
– 1
)
E sup

α∈DδT

∥∥W(α)
∥∥2 + θ .

Proof First notice that

V = sup
α∈T

(∥∥W (α)
∥∥2 – 1) =

(
sup
α∈T

∥∥W(α)
∥∥)2

– 1.

Let � : T → Tδ be such that for every α ∈ T, �α is a nearest neighbor of α in Tδ .
Then

sup
α∈T

∥∥W(α)
∥∥ ≤ sup

α∈Tδ

∥∥W (α)
∥∥ + sup

α∈T

∥∥W (α – �α)
∥∥.

As 2ab ≤ θa2 + b2/θ ,(
sup
α∈T

∥∥W(α)
∥∥)2

≤ (1 + θ)
(
sup
α∈Tδ

∥∥W(α)
∥∥)2

+
(
1 +

1
θ

)(
sup
α∈T

∥∥W (t – �α)
∥∥)2

,

and therefore

V ≤ (1 + θ) sup
α∈Tδ

(∥∥W(α)
∥∥2 – 1) + (1 + 1

θ

)
sup

α∈DδT

∥∥W (α)
∥∥2 + θ .

Taking expectations on both sides leads to the desired result. The proof of the second
inequality is similar. �

Before stating the main result of the section, we consider the easier but important spe-
cial case when A is the collection of k-sparse vectors in RD, that is, vectors with at most k
nonzero coordinates. Thus, the set A is the union of

(D
k

)
k-dimensional subspaces of RD. It

is usually assumed that k � D.

Lemma 13.13 Consider the random projection W : RD → Rd defined above, where the Xi,j
are either standard Gaussian or Rademacher random variables. Let A be the set of all
k-sparse vectors inRD. If the unique solution ε∗ > 0 of the equation

dε2 = 2k log
(
2eD
kε

)
is smaller than 1/2, thenmax (EV ,EV ′) ≤ 16ε∗.
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Proof The index set T = {(a – a′)/‖a – a′‖ : a, a′ ∈ A} may be partitioned into
(D
2k

)
sub-

sets defined by picking 2k coordinates among the D possible ones. An ε∗-net can be
constructed for each subset and the unionTε∗ of the

(D
2k

)
ε∗-nets has cardinality at most(D

2k

)
(1 + 2/ε∗)2k by Lemma 13.11.
The setDε∗T, defined as in Lemma13.12, has the useful property thatDε∗T ⊆ ε∗T,

which implies

E sup
α∈Dε∗ (T)

∥∥W(α)
∥∥2 ≤ ε2∗E sup

α∈T

∥∥W(α)
∥∥2 ≤ ε2∗(1 + EV).

By Lemma 13.12, for any θ > 0,

EV ≤ (1 + θ)E sup
α∈Tε∗

(∥∥W (α)
∥∥2 – 1) + (1 + 1

θ

)
E sup

α∈Dε∗ (T)

∥∥W(α)
∥∥2 + θ

≤ (1 + θ)E sup
α∈Tε∗

(∥∥W (α)
∥∥2 – 1) + (1 + 1

θ

)
ε∗2(1 + EV) + θ.

We choose θ = ε∗, so that (1 + 1/θ) ε2∗ = ε∗(1 + ε∗) < 1. Rearranging, we have

EV ≤ 1
1 – ε∗(1 + ε∗)

(
(1 + ε∗)E

[
sup

α∈Tε∗

(∥∥W (α)
∥∥2 – 1)] + ε∗ (2 + ε∗)

)
.

Now supα∈Tε∗

(∥∥W (α)
∥∥2 – 1) is the maximum of at most

(D
2k

)
(1 + 2/ε∗)2k sub-

gamma random variables with variance factor 2/d and scale factor 2/d. By
Corollary 2.6,

E sup
α∈Tε∗

(∥∥W (α)
∥∥2 – 1)

≤
√
4
2k
d
log

(
eD
2k

(
1 +

2
ε∗

))
+
1
d
2k log

(
eD
2k

(
1 +

2
ε∗

))

≤
√
4
2k
d
log

(
2eD
kε∗

)
+
2k
d
log

(
2eD
kε∗

)
= 2ε∗ + ε2∗.

Combining the obtained bounds and using the fact that ε∗ ≤ 1/2 leads to

EV ≤ 16ε∗.
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In order to upper bound EV ′, we use the second inequality in Lemma 13.12. Choosing
again θ = ε∗, and proceeding as in the proof of the upper bound for EV ,

EV ′ ≤ (1 – ε∗)E sup
α∈Tε∗

(
1 –

∥∥W (α)
∥∥2) + ε∗ + ε∗(1 + EV)

≤ (1 – ε∗)(2ε∗ + ε2∗) + ε∗(2 + 16ε∗) ≤ 12ε∗. �

CombiningTheorem5.10 and Lemma 13.13, we obtain the following, so-called restricted
isometry property of Gaussian andRademacher randomprojections. The remarkable feature
is that when d is roughly of the order of k logD, then the random projection preserves the
metric structure of the set of all k-sparse vectors.

Corollary 13.14 (RESTRICTED ISOMETRY PROPERTY) Consider the random projection
W : RD → Rd defined above, where the Xi,j are either standard Gaussian or Rademacher
random variables. Let A be the set of all k-sparse vectors inRD. If the unique solution ε∗ > 0
of the equation

dε2 = 2k log
(
2eD
kε

)
is smaller than 1/2, then there exists a universal constant κ such that for every ε, δ ∈ (0, 1),
if d ≥ 20(162dε2∗ + log(2/δ))ε–2, then the random map W is an ε-isometry on A with
probability at least 1 – δ.

The main result of this section is the next theorem, which gives general conditions for
a random projection to be an approximate isometry in terms of the metric entropy of the
projected set A. It implies Corollary 13.14 but it is significantly more general.

Theorem 13.15 (KLARTAG–MENDELSON THEOREM) Let A ⊂ RD and consider the ran-
dom projection W : RD → Rd defined above, where the Xi,j are either standard Gaussian
or Rademacher random variables. Let T = {(a – a′)/‖a – a′‖ : a, a′ ∈ A} and define

γ (T) =
∫ 1

0

√
H(x,T)dx,

where H(x,T) is the x-entropy of T (with respect to the Euclidean distance). There exists
an absolute constant κ ′′, such that for all ε, δ ∈ (0, 1) if d ≥ κ ′′ε–2 (γ 2(T) + log(2/δ)),
then W is an ε-isometry on A, with probability at least 1 – δ.

This generalization of the Johnson–Lindenstrauss theorem is relevant evenwhen consid-
ering finite sets A. It tells us that the sensitivity of the random projection method depends
on the “metric size” of the set A rather than on its cardinality. As an example, consider the
case of Corollary 13.14, when A is the set of all k-sparse vectors in RD. It is not difficult
to check that in this case, γ 2(T) ≤ 2k log(D/(2k)), essentially recovering the result of of
Corollary 13.14. In this case, as in many others, the cardinality of A does not matter!
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In order to prove the Klartag–Mendelson theorem, by Theorem 5.10, it suffices to show
that there exists a universal constant κ such that

dmax(EV ,EV ′)2 ≤ κγ 2(T).

This is shown in Proposition 13.17 below.
The rough idea is as follows. SinceV andV ′ are suprema of centered and normalized chi-

square random variables, a glimpse at Lemma 13.1 suggests that a reasonable upper bound
should involve both

∫ √
H(x,T)dx and

∫
H(x,T)dx. Indeed when the Xi,j are standard

Gaussian, it is easy to check that ‖W(α)‖2 – ‖W(α′)‖2 is sub-Gammawith variance factor
proportional to ‖α – α′‖2 and scale factor proportional to ‖α – α′‖ (see Exercise 13.26).
Surprisingly, it is possible to engineer an upper bound that only involves

∫ √
H(x,T)dx,

just as if the process increments were purely sub-Gaussian. The proof of Theorem 13.15
relies on the splitting argument of Lemma 13.12. It improves on the proof of Lemma
13.13 in two respects. First, the chaining lemma (Lemma 13.1) is used to upper bound
E supα∈Tδ

(‖W(α)‖2 – 1). The cutoff δ is tuned in such a way that the sub-Gaussian term
dominates the sub-gamma term. Second, when upper bounding E supα∈DδT ‖W(α)‖2, the
key observation is that {‖W(α)‖,α ∈ DδT} has sub-Gaussian increments. This is estab-
lished in the next lemma. (Recall the definition of the set G(v) of sub-Gaussian random
variables from Section 2.3.)

Lemma 13.16 Let W : RD → Rd be the random map defined as above. Let T be a
bounded subset of RD and let δ > 0 be such that ‖α‖ ≤ δ for every α ∈ T. Let
Z = d supα∈T ‖W(α)‖. Then

Var (Z) ≤ δ2 and Z – EZ ∈ G(δ2)
when X is Gaussian and

Var (Z) ≤ 2δ2 and Z – EZ ∈ G(4δ2)
when X is Rademacher.

Proof Z may be considered as the supremum of a Gaussian (or a Rademacher) process.
Indeed, the representation of the norm as a supremum of linear functions implies that

Z = sup
u∈Rd:‖u‖=1

sup
α∈T

d∑
i=1

D∑
j=1

uiαjXi, j.

On the other hand, the wimpy variance equals

σ 2 = sup
u∈Rd:‖u‖=1

sup
α∈T

d∑
i=1

D∑
j=1

uiα2
j = sup

α∈T

D∑
j=1

α2
j ≤ δ2.

Now we may use the variance bounds proved in Chapter 3 and the exponential
concentration inequalities from Chapter 5 to conclude. �
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Now we are ready to state and prove the key ingredient needed to complete the proof of
Theorem 13.15.

Proposition 13.17 Consider the setup of Theorem 13.15. There exists an absolute constant κ ′
such that

dmax(EV ,EV ′)2 ≤ κ ′γ 2(T)
(
1 +

γ (T)√
d

)2

.

Proof Thanks to standard separability arguments, we may assume that T is a finite set. By
the splitting lemma (Lemma 13.12), for any θ > 0

EV ≤ (1 + θ)E sup
α∈Tδ

(∥∥W(α)
∥∥2 – 1) + (1 + 1/θ)E sup

α∈DδT

∥∥W(α)
∥∥2 + θ .

We choose θ = γ (T)/
√
d and bound the two expectations on the right-hand side by

κγ (T)/
√
d and κ ′γ (T)2/d, where κ , κ ′ are universal constants.

Let the cutoff δ be chosen as δ = 2–J+1, where

J = sup
{
j ≥ 0,H

(
2–j+1,T

) ≤ d
}
.

Note that δ is well defined. Indeed, if H(2,T) = 0 then
{
j ≥ 0,H (2–j+1,T) ≤ d

}
is a

non-empty set, while J = ∞means that δ = 0.
If δ = 0, E supα∈DδT

∥∥W(α)
∥∥2 = 0, so wemay assume that δ > 0. By the definition

of δ,H(δ/2,T) > d. Lemma 13.16 implies that

E sup
α∈DδT

∥∥W (α)
∥∥2 ≤ (

E sup
α∈DδT

∥∥W(α)
∥∥)2

+
2δ2

d
.

On the other hand, the increments ‖W(α)‖ – ‖W(α′)‖ ≤ ∥∥W(α – α′)
∥∥ satisfy the

condition of Lemma 13.1 with a = 1, v = 4/d and c = 0. It follows that

E sup
α∈DδT

∥∥W (α)
∥∥ ≤ 3δ +

12δ√
d

∞∑
j=1

2–j
√
H (δ2–j,DδT).

Our choice of the value of δ implies that for every x > 0, H(x,DδT) ≤ 2H (x/2,T),
and therefore

E sup
s∈DδT

∥∥W (α)
∥∥ ≤ 3δ +

24δ
√
2√

d

∞∑
j=2

2–j
√
H (δ2–j,T).
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SinceH(δ/2,T) > d, if follows that

E sup
α∈DδT

∥∥W (α)
∥∥ ≤ 24δ

√
2√

d

∞∑
j=1

2–j
√
H (δ2–j,T).

Setting

� =
∞∑
j=1

2–j
√
H (δ2–j,T),

the conditionH (δ/2,T) > d entails�2 > d/4 > 1/4, so

E sup
α∈DδT

∥∥W (α)
∥∥2 ≤ 576

δ2�2

d
+
4δ2

d
≤ 592× δ2�2

d
.

Thanks to the monotonicity ofH and to the fact that δ ≤ 2,

E sup
α∈DδT

∥∥W (α)
∥∥2 ≤ c

γ 2(T)
d

for some absolute constant c. Now, Bernstein’s inequality and Lemma 13.1 allow us to
derive an upper bound for E supα∈Tδ

(‖W(α)‖2 – 1) as follows. Recall that for every
α ∈ Rd,

∥∥W(α)
∥∥2 = 1

d

d∑
i=1

W2
i (α).

By the Cauchy–Schwarz inequality, for all α,α′ and every integer k ≥ 2,

E
[∣∣∣Wi(α)2 –Wi (α′)2

∣∣∣k]
≤
(
E
[
|Wi(α) –Wi (α′)|2k

]
E
[
|Wi (α) +Wi (α′)|2k

])1/2
≤ ∥∥α – α′∥∥k ∥∥α+α′∥∥k sup

α∈RD:‖α‖=1
E
[
Wi(α)2k

]
≤ 4k

∥∥α – α′∥∥k ∥∥α + α′∥∥k k!
2
,

where the last inequality comes from the observation that eachWi(α) is sub-Gaussian
(see Section 2.9). Let α0 ∈ Tδ , and set X(α) =

∥∥W(α)
∥∥2. As EX(α0) = 1,

E sup
α∈Tδ

(∥∥W(α)
∥∥2 – 1) = E

[
sup
α∈Tδ

X(α) – X(α0)
]
.
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As the conditions of Lemma 13.1 are satisfied with a = 0, v = 8/d and c = 8/d, we get

E sup
α∈Tδ

(∥∥W(α)
∥∥2 – 1) ≤ 6√

d

∞∑
j=1

2–j
(√

8H (2–j,Tδ) +
8H (2–j,Tδ)√

d

)
.

Now, since Tδ is a δ-net, by the definition of δ, log |Tδ| ≤ d, and therefore
H (.,Tδ) ≤ d, which implies that

E sup
α∈Tδ

(∥∥W(α)
∥∥2 – 1) ≤ 84√

d

∞∑
j=1

2–j
√
H (2–j,Tδ)

≤ 84√
d

∞∑
j=1

2–j
√
H (2–j,T) ≤ 168√

d
γ (T).

It is now time to collect bounds. Choose θ = γ (T)/
√
d and invoke Lemma 13.12 to

obtain

E sup
α∈T

(∥∥W (α)
∥∥2 – 1) ≤ 952

γ (T)√
d

(
1 +

γ (T)√
d

)
,

completing the proof of the upper bound for EV . In order to control EV ′, we use the
second inequality from Lemma 13.12,

EV ′ ≤ (1 – θ)E sup
α∈Tδ

(
1 –

∥∥W (α)
∥∥2) + ( 1

θ
– 1
)
E sup

α∈Dδ(T)
‖W(α)‖2 + θ,

with θ = γ (T) /
√
d. We can indeed prove that

EV ′ ≤ C
γ (T)√

d

with C ≥ 2, by assuming without loss of generality that γ (T) /
√
d ≤ 1/2. �

13.7 Normalized Processes: Slicing and Reweighting

Sometimes one is interested in bounding the supremum of an empirical process
sups∈T

∑n
i=1 Xi,s that is quite inhomogeneous in the sense that the variance Var (

∑n
i=1 Xi,s)

varies with s. To illustrate such a situation, consider the Kolmogorov–Smirnov statistic
already discussed in Chapter 11. In this example, Y1, . . . , Yn are independent random vari-
ables, uniformly distributed over [0, 1]. The (one-sided) Kolmogorov–Smirnov statistic is

Z = sup
s∈[0,1]

n∑
i=1

(1{Yi≤s} – s).
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As half-lines form a VC-class with VC-dimension 1, it follows from Theorem 13.7 that
EZ = O(

√
n), and this is the correct order of magnitude. (See Exercise 13.18 for an altern-

ative argument.) For small and large values of s, the variance of1{Yi≤s} is small and the max-
imal value is unlikely to be achieved for such indices. Indeed, it is not difficult to see thatZ is
not very different from sups∈[1/4,3/4]

∑n
i=1 (1{Yi≤s} – s). The knowledge of EZ and the avail-

ability of concentration inequalities tell us little about the fluctuations of
∑n

i=1 (1{Yi≤s} – s)
for small and large values of s. By dividing each 1{Yi≤s} – s by its standard deviation, one
obtains a re-weighted process that may contain more interesting information.

In this section we discuss the so-called peeling (or stratification, or slicing) techniques
which, in combination with re-weighting, allows one to investigate fine properties of empir-
ical processes. Such techniques will be used in the next two sections to obtain sharp bounds
for uniform relative deviations of L2 distances and the risk of empirical risk minimization in
classification.

The basic idea is that by decomposing the class such that each component contains ran-
dom variables with similar variances, one may take full advantage of Bousquet’s inequality
(Theorem 12.5).

The following lemma illustrates how slicing the index set T into sub-collections can be
used to investigate re-weighted processes.

Call a function ψ : [0,∞) → [0,∞) sub-linear if it is nondecreasing, continuous,
ψ(x)/x is nonincreasing, and ψ(1) ≥ 1. Note that if ψ and ρ are sub-linear, then so are
ψ ◦ ρ and ψ + ρ. Moreover, for any α ≥ ψ(1), the equation αr2 = ψ(r) has a unique
solution in (0, 1]. One can easily check that every sub-linear function ψ is sub-additive in
the sense thatψ(u + v) ≤ ψ(u) + ψ(v) (see Exercise 13.41).

Lemma 13.18 Let T be a countable index set and let L : T → [0,∞). Assume that there
exists s ∈ T such that L(s) = infs∈T L(s). Let (Zs)s∈T denote a stochastic process indexed
by T .Assume that there exists a sub-linear functionψ and rcr > 0 such that for all r ≥ rcr,

E sup
s:s∈T ,L(s)≤r2

|Zs – Zs| ≤ ψ(r).

Then, for all r ≥ rcr,

E sup
s∈T

r2

r2 + L(s)
|Zs – Zs| ≤ 4ψ(r).

Proof Let r ≥ rcr. We decompose the index set T into slices according to the value of the
function L as follows. Let T0 =

{
s : s ∈ T , L(s) ≤ r2

}
and for k ≥ 1, let

Tk =
{
s : s ∈ T , r222(k–1) < L(s) ≤ r222k

}
.

Let Vr = sups∈T
r2

r2+L(s) |Zs – Zs|. Then

EVr ≤
∞∑
k=0

E sup
s∈Tk

r2
|Zs – Zs|
r2 + L(s)

≤ ψ(r) +
∞∑
k=1

r2

r2 + r222(k–1)
E sup

s∈Tk

|Zs – Zs|
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≤ ψ(r) +
∞∑
k=1

1
1 + 22(k–1)

ψ(2kr)

≤ ψ(r) + 2
∞∑
k=1

2k–1

1 + 22(k–1)
ψ(r) (sinceψ is sub-linear)

≤ 2

(
1 +

∞∑
k=0

2–k
)

ψ(r). �

Theorem 13.19 For i = 1, . . . , n, let Xi = (Xi,s)s∈T be a collection of random variables
indexed by a countable set T and suppose that X1, . . . ,Xn are independent and identic-
ally distributed. Assume that for all i ≤ n and s ∈ T , EXi,s = 0 and that |Xi,s| ≤ 1
almost surely. Let L : T → [0,∞) which achieves its minimum at s ∈ T . Assume
that sups∈T ,i≤n |Xi,s – Xi,s| ≤ 1. Let σ : T → [0,∞) be such that for every s ∈ T ,
E (Xi,s – Xi,s)2 ≤ σ 2(s). Assume there exists a sub-linear function ρ such that for all
s ∈ T , σ (s) ≤ ρ

(
L(s)1/2

)
and there exists a sub-linear ψ such that for all r satisfying√

nr2 ≥ ψ(r),

√
nE sup

s∈T
σ (s)≤r

∣∣∣∣∣
n∑
i=1

1
n
(Xi,s – EXi,s – Xi,s + EXi,s)

∣∣∣∣∣ ≤ ψ(r).

Let ε, δ ∈ (0, 1] and let r(δ) > 0 be the unique solution of equation

√
nr2 =

1
ε

(
8ψ(ρ(r)) + ρ(r)

√
log 1/δ +

2 log 1/δ
3
√
n

)
.

Then, with probability at least 1 – 2δ, for all s ∈ T∣∣∣∣∣
n∑
i=1

1
n
(Xi,s – EXi,s – Xi,s + EXi,s)

∣∣∣∣∣ ≤ ε(L(s) + r2(δ)).

By taking ε = 1 in Theorem 13.19 and defining r∗ as the solution of the equation√
nr2 = ψ(ρ(r)), we find that with probability of at least 1 – 2δ, for all s ∈ T∣∣∣∣∣

n∑
i=1

1
n
(Xi,s – EXi,s – Xi,s + EXi,s)

∣∣∣∣∣ ≤ L(s) + 130r2∗ + 4
log 1/δ

n
.

This follows in a straightforward manner by observing that if ε = 1,

r(δ)2 ≤ 130r2∗ + 4
log 1/δ

n
.

The proof of this is left to the reader (see Exercise 13.42).
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Proof Denote Xi,s = Xi,s – EXi,s for all i ≤ n and s ∈ T . We prove that with probability at
least 1 – δ, for all s ∈ T ,

n∑
i=1

1
n
(Xi,s – Xi,s) ≤ ε(L(s) + r2(δ)).

A similar argument can be applied to prove that with probability at least 1 – δ,

n∑
i=1

1
n
(Xi,s – Xi,s) ≤ ε(L(s) + r2(δ)).

Let r be such that
√
nr2 > ψ(r). Define the random variable

Vr = sup
s∈T

r2
∑n

i=1(1/n)(Xi,s – Xi,s)
L(s) + r2

.

Then Vr is the supremum of a centered empirical process indexed by T . Moreover, as
L(s) ≤ r2, we have σ (s) ≤ ρ(r), and therefore, by the assumption of the theorem,

E sup
s∈T

L(s)≤r2

∣∣∣∣∣
n∑
i=1

1
n
(Xi,s – Xi,s)

∣∣∣∣∣ ≤ ψ(ρ(r))√
n

.

Since the class of sub-linear functions is closed by composition, by Lemma 13.18,

EVr ≤ 4
ψ(ρ(r))√

n
.

Note that if L(s) ≤ r2,

Var
(
r2(Xi,s – Xi,s)
(L(s) + r2)

)
≤ E(Xi,s – Xi,s)2 ≤ ρ2(r),

while for each s ∈ T , as 2
√
L(s)r ≤ L(s) + r2,

Var
(
r2(Xi,s – Xi,s)
(L(s) + r2)

)
≤
(
rρ(

√
L(s))√

4L(s)

)2

.

Thus if L(s) ≥ r2, by the sub-linearity of ρ,

Var
(
r2(Xi,s – Xi,s)
L(s) + r2

)
≤ ρ2(r)

4
.
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On the other hand, for all i ≤ n, s ∈ T , almost surely∣∣∣∣r2 (Xi,s – Xi,s)
L(s) + r2

∣∣∣∣ ≤ 1.

Now we may use Bousquet’s inequality (Theorem 12.5) to conclude that, with
probability at least 1 – δ,

Vr ≤ EVr +
√
2
n
(2EVr + ρ2(r)) log

1
δ
+

1
3n

log
1
δ

≤ 2EVr + ρ(r)

√
log 1

δ

n
+
4
3
log 1

δ

n

≤ 8
ψ(ρ(r))√

n
+ ρ(r)

√
log 1

δ

n
+
4
3
log 1

δ

n
.

Using the definition of r(δ), this implies that, with probability at least 1 – δ, for all
s ∈ T ,

n∑
i=1

1
n
(Xi,s – Xi,s) ≤ ε

(
L(s) + r2(δ)

)
.

�

13.8 Relative Deviations for L2 Distances

This section describes an easy application of the peeling/reweighting technique presented
in the previous section. Let T be a countable set and letX1, . . . ,Xn be independent identic-
ally distributed vector-valued random variables whereXi = (Xi,s)s∈T . Wemay define amet-
ric d on T by d(s, s′) = (E(X1,s – X1,s′)2)

1/2. The basic question we investigate here is how
well the random empirical metric dn(s, s′) =

(∑n
i=1(1/n)(Xi,s – Xi,s′)2

)1/2 approximates the
metric d.

The next theorem reveals that if the subset of T formed by those s ∈ T with small values
of EX2

1,s is not too “rich,” the empirical metric space (T , dn) faithfully approximates (T , d),
at least above a certain scale.

Theorem 13.20 Let X1, . . . ,Xn be defined as above and suppose EXi,s = 0 and |Xi,s| ≤ 1
almost surely for all i = 1, . . . , n and s ∈ T . Assume that there exists s ∈ T for which
Xi,s = 0 almost surely. Assume that there exists a sub-linear function φ such that for all
r ≥ 0 such that

√
nr2 ≥ φ(r),

√
nE sup

s∈T ,EX2
1,s≤r2

1
n

∣∣∣∣∣
n∑
i=1

Xi,s

∣∣∣∣∣ ≤ φ(r).
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Let ε ∈ (0, 1) and let r(δ) > 0 be the unique solution of the equation

√
nr2 =

1
ε

(
128φ(r) + r

√
log 1/δ +

4 log(1/δ)
3
√
n

)
.

Then, with probability of at least 1 – 2δ, for all s ∈ T ,∣∣∣∣∣ 1n
∑n

i=1 X
2
i, s

EX2
1, s

– 1

∣∣∣∣∣ ≤ ε

(
1 +

r(δ)2

EX2
1, s

)
.

The theorem implies that if r∗ is defined as the positive solution of
√
nr2 = 8φ(r),

then with probability of at least 1 – 2δ, for all s ∈ T such that EX2
i, s ≥ 130r2∗/ε2 +

(4/n) log(1/δ), one has ∣∣∣∣∣ 1n
∑n

i=1 X
2
i,s

EX2
1,s

– 1

∣∣∣∣∣ ≤ 2ε.

Proof The proof is a simple application of Theorem 13.19 to the family of random
variables

{
X2
i,s : s ∈ T , i ≤ n

}
. Note first that

sup
s∈T
i≤n

∣∣X2
i,s – EX

2
i,s

∣∣ ≤ 1.

Second, choosing L(s) = σ 2(s) = EX2
i,s, L is minimized by s while letting ρ(r) = r for

all r ≥ 0, E
[
(X2

i,s)
2] ≤ ρ2(L(s)1/2). The only point that needs to be checked is that

√
nE sup

s∈T ,σ 2(s)≤r2

1
n

∣∣∣∣∣
n∑
i=1

X2
i,s – EX

2
i,s

∣∣∣∣∣ ≤ 8φ(r).

However, this follows by symmetrization (Lemma 11.4) and by the contraction
principle (Lemma 11.6) as x �→ x2 is 2-Lipschitz over [–1, 1]. We may apply
Theorem 13.19 on

{
(X2

i,s : s ∈ T , i ≤ n
}
withψ = 16φ. �

13.9 Risk Bounds in Classification

We close this chapter by describing an application of the techniques introduced in Section
13.7 to construct risk bounds for empirical risk minimization in binary classification. The
classification problem is at the heart of statistical learning theory and its analysis served as a
driving force for the development of empirical process theory.Herewe present just a sample
from the rich theory of classification. We apply Theorem 13.19 to obtain sharp bounds
for the risk of a classifier that minimizes the empirical risk over a VC class of candidate
classifiers.
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The setup is described as follows. In binary classification the observation X is a random
variable taking values in some set X and its binary label Y is a {0, 1}-valued random vari-
able. The joint distribution of X and Y is denoted by P. A classifier is a measurable function
s : X → {0, 1}. The risk of classifier s is P{Y �= s(X)}. The so-called Bayes classifier
s∗(X) = 1{E[Y |X]≥1/2} minimizes the risk among all possible classifiers.

In statistical learning, the joint distribution P is unknown but a sample
(X1, Y1), . . . , (Xn, Yn) of independent pairs, distributed according to P, is available.
Given a collection T of classifiers, one may choose ŝ ∈ T by minimizing the empirical
risk

∑n
i=1 1{Yi �=s(Xi)} over s ∈ T . In this section we work with the simplifying, and perhaps

unrealistic, assumption that s∗ ∈ T , that is, the Bayes classifier is in the class of candidate
classifiers. The performance of the empirical risk minimizer is measured by the excess
risk �(s, s∗) = P{Y �= s(X)} – P{Y �= s∗(X)}. Letting η(X) = E[Y |X], it is straightforward
to verify that �(s, s∗) = E

[
|2η(X) – 1||s(X) – s∗(X)|

]
. We also assume that the collec-

tion of sets {{x ∈ X : s(x) = 1} : s ∈ T } is a VC-class with VC-dimension V . Introducing
Zi,s = 1{Yi �=s(Xi)} for i ≤ n and s ∈ T , the set of classifiers is endowedwith the pseudo-metric
d(s, t) =

√
E[(Z1,s – Z1,t)2].

Bounds on excess loss depend on the richness of T , the sample size n, but also on
how “noisy” the observations are. One way to quantify a “low-noise” assumption is by the
Mammen–Tsybakov noise conditions according to which there exist h ∈ [0, 1] and θ ≥ 1
such that

�(s, s∗) ≥ hθd2θ (s, s∗), for all s ∈ T .

The simplest and strongest condition belongs to the case θ = 1. In this case one has
|2η(X) – 1| = h almost surely.

Theorem 13.21 (RISK BOUNDS FOR VC CLASSES) Assume that ŝ minimizes the
empirical risk on a sample of size n over a VC-class T of VC-dimension V. Assume that
the Bayes classifier belongs to T , and the Mammen–Tsybakov noise condition is satisfied by
some h > 0 and θ ≥ 1. Then

E�( ŝ, s∗) ≤ κ

(
V(1 + log(nh2θ/V))

nh

)θ/(2θ–1)

,

where κ is a universal constant that does not depend on n, T , h, θ .

Proof The proof is based on an application of Theorems 13.19 and 13.7. Since∑n
i=1 Zi,̂s ≤∑n

i=1 Zi, s∗ ,

�( ŝ, s∗) ≤ 1
n

n∑
i=1

(Zi, s∗ – EZi, s∗ – Zi,̂s + EZi, ŝ).

Thus, the excess risk is boundedby the oscillation of the centered empirical risk process
between s∗ and ŝ.
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Let φ : [0, 1] → R+ be defined by

φ(r) = 72r

√
V log

(
4e
r

)
.

By Theorem 13.7, for r ∈ [0, 1],

E sup
s∈T : d(s, s∗)≤r

∣∣∣∣∣
n∑
i=1

(Zi, s∗ – EZi, s∗ – Zi, s + EZi, s)

∣∣∣∣∣ ≤ φ(r).

One may easily verify that φ is sub-linear.
We now apply Theorem 13.19. Since h–1/2(

√
�(s, s∗))1/θ ≥ d(s, s∗), we may

choose ρ(r) = h–1/2r1/θ . As 0 ≤ θ ≤ 1, ρ is sub-linear.
Let r∗ be the nonnegative solution of

√
nr2φ(ρ(r)). By Theorem 13.19, with

probability at least 1 – 2 exp(–x), for all s ∈ T ,∣∣∣∣∣
n∑
i=1

(Zi, s∗ – EZi, s∗ – Zi, s + EZi, s)

∣∣∣∣∣ ≤ ε
(
�(s, s∗) + 130r2∗ + 4

x
n

)
.

Thus, with probability at least 1 – 2e–x,

�( ŝ, s∗) ≤ ε
(
�( ŝ, s∗) + 130r2∗ + 4

x
n

)
.

Rearranging, we obtain

�( ŝ, s∗) ≤ ε

1 – ε

(
130r2∗ + 4

x
n

)
.

Integrating with respect to x leads to

E�( ŝ, s∗) ≤ ε

1 – ε

(
130r2∗ +

4
n

)
.

It remains to upper bound r2∗. From

√
nr2∗ = 72h–1/2r1/θ∗

√
V log

(
4e

h–1/2r1/θ∗

)
,

as r∗ ≤ 1, we may deduce

r∗ ≥
(
72

√
V
nh

log
(

4e
h–1/2

))θ/(2θ–1)

.
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This entails

r2∗ ≤
⎛⎜⎝K2 V

nh
log

⎛⎜⎝ 4e

h–1/2
(
K
√

V
nh log

( 4e
h–1/2

))1/(2θ–1)
⎞⎟⎠
⎞⎟⎠

θ/(2θ–1)

.
�

13.10 Bibliographical Remarks

The notion of metric entropy was introduced by Kolmogorov and Tikhomirov (1961) to
quantify the performance of non-linear approximation methods in functional analysis. We
refer to the books by DeVore and Lorentz (1993) and Lorentz, Golitschek, and Makovoz
(1996) for an in-depth exposition of entropic arguments in approximation theory.

The idea of chaining in order to upper bound the supremum of a Brownian motion was
initiated by Kolmogorov (see Slutsky (1937) and Čentsov (1956)). In the context of gen-
eral Gaussian processes, chaining was introduced by Dudley (1967) in order to provide a
sufficient condition for the existence of an almost surely continuous version of a Gaussian
process. SinceDudley (1967), chaining provided a genericmethod to derive tail bounds for
suprema of processes as suggested in Exercise 13.9.When dealingwith suprema of bounded
empirical processes, such bounds can be compared with bounds obtained by combining
concentration inequalities and upper bounds for the expectation. The proof pattern used in
Section 13.1 is due to Pisier (1983). A general approach would consist of using “majorizing
measures” (also called “generic chaining”) as introduced by Fernique (1975), rather than
metric entropy. We refer to Ledoux and Talagrand (1991) and Talagrand (1994b, 1996a,
2005) for an extensive study of this topic.

Slepian’s lemma (Theorem 13.3) first appears in Slepian (1962), but see also Fernique
(1975) and Gordon (1985) for improvements and generalizations. The proof presented
here is based on an argument presented by Chatterjee (2005b) (see also Piterbarg (1982)).
Sudakov’s inequality (Theorem 13.4) is from Sudakov (1969). Li and Shao (2001) survey
many related inequalities for Gaussian processes.

In empirical process theory, arguments based on uniform entropy numbers were pion-
eered by Koltchinskii (1981) and Pollard (1984). VC classes of sets were introduced by
Vapnik and Chervonenkis (1971). Uniform bounds on L2 covering numbers for VC-classes
were first obtained by Pollard (1982, 1984) and Dudley (1987) (see Exercise 13.11).
Lemma 13.6 was proved by Haussler (1995) using combinatorial properties of traces
of VC-classes that were first established by Haussler, Littlestone, and Warmuth (1994).
Conditions on uniform entropy numbers that generalize those satisfied by VC classes of sets
play an important role in the analysis of functional central limit theorems (see van der Vaart
and Wellner (1996)). The concept of a VC-class of sets can be used to define VC subgraph
classes of functions and VC-major classes (see Exercises 13.13, 13.14). An analog of the
VC dimension, called the fat-shattering dimension for classes of functions was introduced by
Kearns and Schapire (1994) (see Anthony and Bartlett (1999) for a survey andMendelson
and Vershynin (2003) where the relevant generalization of Lemma 13.6 is established).
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Upper bounds on the expected value of suprema of empirical prcesses indexed by classes
of functions with regularly varying uniform entropy numbers can be found in Talagrand
(1994b),Mendelson (2002b), Giné andKoltchinskii (2006), andKoltchinskii, (2008) (see
Exercise 13.18).

Lemma 13.8 was first proved by Rudelson (1999) using non-commutative Khinchine
inequalities due to Lust-Piquard and Pisier (1991). The approach described in Section
13.4 was pioneered by Ahlswede and Winter (2002). The presentation given here fol-
lows Imbuzeiro Oliveira (2010). Alternative proofs using Lieb’s concavity theoremmay be
found in Tropp (2010a, 2010b). For a general treatment of matrix inequalities, we recom-
mend Bhatia (1997). Exercises 13.31, 13.32, and 13.33 describe how Rudelson’s inequality
and concentration inequalities for suprema of empirical processes can be combined in order
to establish concentration inequalities for operator norms of sums of random symmetric
matrices.

Theorem 13.15 is due to Klartag andMendelson (2005) who actually proved a stronger
result since they were able to replace the functional γ (T) that comes from classical chain-
ing by Talagrand’s γ2(T) which is obtained by generic chaining (Talagrand, 2005) and
is known to sharply characterize the expected value of suprema of Gaussian processes. A
purely Gaussian version of this result had previously been established by Gordon (1988).
The restricted isometry property described in Corollary 13.14 was introduced by Candès,
Romberg, and Tao (2006). Its proof via Lemma 13.13 is due to Baraniuk et al. (2008).

Mendelson, Pajor, and Tomczak-Jaegermann (2007) go beyond the scope of Theorem
13.15 and attempt to control

∑
s∈T (1/n)

∑n
i=1 X

2
i,s – 1 where (Xi)i≤n are independent ran-

dom vectors with EXi,s = 0 and EX2
i,s = 1 for all s ∈ T , by simply assuming that Xi,s – Xi,s′

is sub-Gaussian with variance factor proportional to the squared distance between s and s′.
They provide an extension of Lemma 13.16.

Baraniuk andWakin (2009) use the same device to perform dimensionality reduction of
a manifold of smooth data using random linear projections. They establish an upper bound
for the rank of random projections needed to guarantee that, with high probability, all pair-
wise Euclidean and geodesic distances between points on the manifold are approximately
preserved.

Theorem 13.15 and Lemma 13.13 provide transparent proofs of upper bounds on the
Gelfand numbers of �np balls derived by Kashin (1977).

The fact that randommatrices with independent rows are almost isometric embeddings
is central to the emerging field of compressed sensing (see Donoho (2006a) and Candès
and Tao (2006)). This question is closely related to the control of the largest and smallest
singular values of the randommatrix (Xi,j)i≤d,j≤D and has been further explored byRudelson
and Vershynin (2010). We refer the reader to Vershynin (2012) and references therein for
more details on non-asymptotic results in the booming theory of randommatrices.

Adamczak et al. (2010) consider extensions of the Johnson–Lindenstrauss problem
in which the columns of the random projection matrix do not have i.i.d. sub-Gaussian
coefficients but are rather sampled from a log-concave distribution (such as the uniform
distribution over a convex body).

A host of useful bounds for the expected value of suprema of empirical and Rademacher
processes can be found in van der Vaart and Wellner (1996), Giné and Guillou (2001),
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Giné and Koltchinskii (2006), Giné, Koltchinskii, and Wellner (2003), and Massart
(2006). Tail bounds for the Kolmogorov–Smirnov statistic have attracted considerable
attention. Dvoretzky, Kiefer, and Wolfowitz (1956) were the first to obtain sub-Gaussian
inequalities. Massart (1990) proved that

P
{
sup
s∈R

|(Pn – P)((–∞, s])| ≥ t
}
≤ 2e–2nt

2
.

We refer to Shorack andWellner (1986) for classical results on the oscillations of the empir-
ical process indexed by half-lines. The analysis of the modulus of oscillation of empirical
processes indexed by general classes of sets goes back to the work of Alexander (1987)
(see also van de Geer (2000) for applications to M-estimation). The impact of concen-
tration inequalities on this topic is thoroughly investigated in Giné, Koltchinskii, and
Wellner (2003), Giné and Koltchinskii (2006), Massart (2000b), Massart and Nédélec
(2006), Massart (2006), and Bartlett and Mendelson (2006). Giné, Koltchinskii, and
Wellner (2003, 2006) consider different re-weighting techniques. Indeed they normalize
(Pn – P)fs by its standard deviation σ (fs) = (Pf 2s – (Pfs)2)1/2 rather than its variance (see
also Bartlett andMendelson (2006)). This approach allowed them to investigate moduli of
continuity of empirical processes, that is, quantities like

sup
T[r,r′)

|(P – Pn)fs|
ω(σ (fs))

where Trn ,r′n = {s : σ (fs) ∈ [rn, r′n)} andω is some positive nondecreasing function.
Giné, Koltchinskii, and Wellner (2003) and Giné and Koltchinskii (2006) describe

improvements which take into account the L2(P) norm of the envelop of the class.
Versions of Theorems 13.19 and 13.20 can be found in Massart (2000b, 2006),

Koltchinskii (2006), and Bartlett and Mendelson (2006) The version presented here
follows Boucheron, Bousquet, and Lugosi (2005a).

Theorem 13.21 was defined byMassart and Nédélec (2006). Matching lower bound for
risk estimates can be found in this paper. For surveys on the classification problem, we refer
the reader to Devroye, Györfi, and Lugosi (1996) and Boucheron, Bousquet, and Lugosi
(2005a).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

13.11 EX ERC I S E S

The chaining idea

13.1. (ENTROPY NUMBERS AND ε-ENTROPY) Considering entropy numbers rather
than packing numbers provides an alternative approach to chaining. Sticking to the
notation of Section 13.1, define the nth entropy number en(S) for n ∈ N, as
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en(S) = inf
{
ε : N(ε, S) ≤ 22

n}
= inf

{
ε : H(ε, S) ≤ 2n log(2)

}
.

Using the notation of Lemma 13.1, prove that

E
[
sup
s∈S

Xs – Xs0

]
≤ aδ +

√
v

∞∑
j=1

en(S)2n/2 + c
∞∑
j=1

en(S)2n.

Hint: for n ∈ N, let Sn be a en(S)-packed subset of S with maximal cardinality. By
the definition of en(S), |Sn| ≤ 22n+1 . For n ≥ 1, let�n map each s ∈ S on a nearest-
neighbor in Sn–1 and let�0(s) = s0. (See Talagrand (2005).)

13.2. (ANOTHER LOOK AT COROLLARY 2.6) Let X1, . . . ,Xn be independent random
vectors indexed byT . Let ε1, . . . , εn be independent Rademacher variables. Assume
maxi≤n sups∈T |Xi,s| ≤ 1, EXi,s = 0 and let σ 2 ≥ sups∈T

∑n
i=1 E[X

2
i,s]/n. Prove that

there exists a universal constant κ such that:

E sup
s∈T

∣∣∣∣∣
n∑
i=1

εiXi,s

∣∣∣∣∣ ≤ κ max
(
σ

√
nlog |T |, log |T |

)
.

Hint: use the contraction principle and the maximal inequality for sub-Gaussian
random variables (Theorem 2.5). (See Koltchinskii, 2008.)

13.3. (STEIN’S INTEGRATION-BY-PARTS FORMULA) Prove that if F : Rn → R is con-
tinuously differentiable such that for any a > 0, lim‖x‖→∞ F(x) exp(–a‖x‖2) = 0
and X = (X1, . . . ,Xd) is a centered Gaussian vector, then for any 1 ≤ i ≤ d,

E
[
XiF(X)

]
=

d∑
j=1

E[Xi Xj]E
[

∂F
∂xj

(X)
]
.

Hint: use integration-by-parts to establish the formula in dimension 1, then proceed
by conditioning. That this is a characteristic property of Gaussian vectors is at the
core of Stein’s approach to prove central limit theorems; see Chatterjee and Dey
(2010), Chatterjee (2005a) and references therein.

13.4. (CHAINING AND ITS LIMITATIONS) Let Y1, . . . , Yn, . . . be a countable collection
of independent standard Gaussian random variables. Let

Z = sup
i=1,2,...

Yi/
√
logmax(i, 2).

The random variable Z is the supremum of a Gaussian process. The natural dis-
tance associated with this Gaussian process is d(s, s′) = (1/ log s + 1/ log s′)1/2 for
s �= s′, s, s′ ≥ 2. Check that for δ < 1/2, the δ-entropy of the index set N satis-
fies κ ′/δ2 ≥ H(δ,N) ≥ κ/δ2 for some constants κ , κ ′. What kind of upper bound
on EZ can be deduced from Corollary 13.2? What kind of lower bound can be
deduced from Sudakov’s lower bound (Theorem 13.4)? Prove that EZ < ∞ (10
is a plausible and generous upper bound). Hint: use the fact that for m ≥ 2,
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maxi:1≤i/2m≤2 Yi/
√
log i ≤ maxi:1≤i/2m≤2 |Yi|/

√
m log 2. Derive tail bounds for the

latter quantity. Use the union bound. See Talagrand (1996a, 2005). Note that the
random variables Yi/

√
logmax(i, 2) have very different variances and that deriving

sharp upper bounds for the expectation of the supremum relies on slicing the family
of random variables into pieces with similar variances, and computing tight bounds
for suprema over the slices.

13.5. (GAUSSIAN PROCESSES INDEXED BY ELLIPSOIDS) Let X1, . . . ,Xn be independ-
ent standard Gaussian random variables. Let (a1, . . . , an) ∈ Rn, with ai > 0 for
1 ≤ i ≤ n. Let T = {s = (s1, . . . , sn) :

∑n
i=1 s

2
i /a

2
i ≤ 1}. Let Z = sups∈T

∑n
i=1 siXi.

Prove that EZ ≤ (
∑n

i=1 a
2
i )

1/2. Prove also that

E sup
s,s′∈T ,‖s–s′‖≤c

n∑
i=1

(si – s′i)Xi ≤
√√√√8

n∑
i=1

min(a2i , c2).

What upper bound does Theorem 13.2 imply in this case? (See Talagrand (1996a)
for a discussion.)

13.6. (EXPECTATION OF A MAXIMUM OF INDEPENDENT GAUSSIAN RANDOM VARI-
ABLES) Let (Xs)s∈T be independent standard Gaussian random variables. Prove
that for |T | ≥ 2,

Emax
s∈T

Xs ≥ 1√
2

√
log |T |.

13.7. (OPERATOR NORM OF A GAUSSIAN MATRIX) Let X = (Xi,j)1≤i,j≤n be a stand-
ard Gaussian vector considered as an n× n matrix. (This is sometimes called
the Ginibre ensemble.) Let Y = (Yi)i≤n be a standard Gaussian vector and let Y ′
be an independent copy of Y . Let K = Sn–1 × Sn–1 ⊂ R2n be the set of pairs of
unit vectors from Rn. Let Z = sup(u,v)∈K uTXv be the operator norm of X and let
U = sup(u,v)∈K(〈u, Y〉 + 〈v, Y ′〉) be the sum of two independent isonormal pro-
cesses. Prove that

EZ ≤ EU ≤ 2
√
n.

Hint: the second inequality is a special case of the bound obtained in Exercise
13.5. The first inequality can be obtained using Theorem 13.3. Note that
uTXv = trace(XvuT). Check that for (u, v) and (s, t) in K, E

[(
uTXv – sTXt

)2] =
‖vuT – tsT‖2HS and

∥∥vuT – tsT
∥∥2
HS

≤ ‖u – s‖2 + ‖v – t‖2 (see Davidson and Szarek
(2001)).

13.8. (THE LARGEST EIGENVALUE OF A RANDOM MATRIX DISTRIBUTED AS THE
GUE) Recall the definition of the GUE from Section 5.10. The largest eigenvalue
of an n× n random matrix from the GUE is the supremum of a Gaussian process
indexed by the unit sphere Sn–1 = {u ∈ Cn : ‖u‖2 = 1}:

Z = sup
u∈Sn–1

u∗Xu = sup
u∈Sn–1

trace(Xuu∗),
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where u∗ is the conjugate transpose of the complex column vector u. Use chaining or
a comparison argument as in Exercise 13.7 to prove that EZ ≤ C for some universal
constant C ≥ 1.Hint: check that for u, v ∈ Sn–1,

E
[
(u∗Xu – v∗Xv)2

]
=
1
n
∥∥uu∗ – vv∗∥∥2

HS
,

and that ‖uu∗ – vv∗‖2HS ≤ 4‖u – v‖2.
13.9. (TAIL BOUNDS VIA CHAINING) Let (T , d) , (Xs)s∈T , a, v, c, δ, and s0 be defined as

in Theorem 13.1. Let

E = 3aδ + 6δ
∞∑
j=1

2–j
(√

v
(
j + 2H(δj)

)
+ c

(
j + 2H(δj)

))
.

Prove that there exists a universal constant κ such that for any u > 1

P
{
sup
s∈S

Xs – Xs0 ≥ uE
}
≤ κe–u.

Hint: the event

{∃s ∈ T ;Xs – Xs0 ≥ uE}

is included in

⋃
s∈T

J⋃
j=0

{
X�j+1s – X�j s ≥ δj+1

(
3ua + 2

√
uv( j + 2H(δj+1)) + cu

(
j + 2H(δj+1)

))}
.

The probability of the events on the right side are upper bounded by

exp
(
2H(δj+1)

)
exp

(
–u( j + 2H(δj+1))

)
.

Up to a constant, E is not larger than the upper bound on expectation described in
Lemma 13.1.

13.10. (CHAINING, FAMILIES OF DISTANCES) Recall the definition of a Gaussian chaos
of order two from Example 2.12. Let X = (X1, . . . ,Xn) be a standard Gaussian
vector. Let T be a collection of symmetric n× n real matrices with zeroes in the
diagonal entries. Let Z = supA∈T XT(A – A0)X for some fixed A0 ∈ T . Let ‖A‖op
and ‖A‖HS be the operator and Hilbert–Schmidt norms of A. Let HHS(u),Hop(u)
denote the u-entropy of T under the two norms. Let

E =
∫ δHS/2

0

√
2HHS(u, T )du +

∫ δop/2

0
2Hop(u, T )du.
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Prove that there exists a universal constant κ such that for any u > 1,

P {Z ≥ uE} ≤ κe–u.

Hint: for each n = 1, 2, . . ., let εop,n be defined by inf
{
ε : Hop(ε, T ) ≤ 2n

}
and

define εHS,n similarly. Let Top,n and THS,n be the corresponding εop,n– and εHS,n–nets.
For each n, Top,n and THS,n define two partitions Bn and Cn of T : the cell associated
with an element A ∈ Top,n is{

A′ : A′ ∈ T , ‖A′ – A‖op = min
M∈Top,n

‖M – A′‖
}
.

The cells of Cn are defined in a similar way. For each n, the partitionAn is obtained
by intersecting the cells of Bn–1 and Cn–1. For each n, let �n map each A ∈ T to a
distinguished element of A’s cell inAn. Let J be the smallest index n such thatAn is
trivial. Check that for u > 1, {Z ≥ uE} is included in

⋃
A∈T

J–1⋃
j=0

{
X�j+1s – X�js ≥

(
2δHS, j–1

√
u ( j + 2 j+1 log 2) + 2uδop, j–1

(
j + 2 j+1 log 2

))}
.

We refer to Talagrand (2005, Theorem 1.2.7, Section 2.5, and Chapter 5) for a
thorough discussion of generic chaining. Generic chaining provides tails bounds
for suprema of processes whose increments are controlled by a family of distances.
Talagrand discusses the possibility and the difficulties of deriving matching lower
bounds.

VC classes and uniform entropy bounds

13.11. (A SUBOPTIMAL BOUND ON THE METRIC ENTROPY OF VC-CLASSES) Using the
notation of Lemma 13.6 prove that for all κ > 1,

H(δ, T ) ≤ κ

κ – 1
V log

(
2κ
Vδ2

)
.

Hint: assume there exist N elements A1, . . . ,AN of the VC-class T that are
δ-separated under L2(Q) where Q is a probability distribution over X . Pick
n = 2 logN2/δ2 samples independently at random according to Q . Show that the
VC-entropy of T on this sample is at least logN while, according to Sauer’s lemma
it is also less than V log(en/V) if n ≥ V where V is the VC-dimension of T in X .
Proofs of Sauer’s lemma can be found in Sauer (1972), Frankl (1983), Bollobás
(1986), Ledoux and Talagrand (1991). See Haussler (1995) and also Pollard
(1990).

13.12. (DENSITY OF 1-INCLUSION GRAPHS) Let C be a collection of subsets of X . Let
x = (x1, . . . , xn) be a sample of n (not necessarily distinct) elements fromX . Recall
that the trace of C on x is defined as

tr(x) = {J : J ⊆ {1, . . . , n}, ∃A ∈ C,∀i ∈ {1, . . . , n}, i ∈ J ⇔ xi ∈ A} .
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As the trace tr(x) may be identified as a subset of {0, 1}n, it induces a subgraph of
the n-cube. This subgraph is called the 1-inclusion graph. The density dens(x) of
this subgraph is the ratio between the number of edges and the number of vertices.
Prove that dens(x) ≤ 1

2 log2 |tr(x)|. Prove that if C is a VC-class with VC-dimension
V , then dens(x) ≤ V/2. Is this bound tight? LetX1, . . . ,Xn be independent identic-
ally distributedX -valued random variables. LetZ = dens(X1, . . . ,Xn). Prove thatZ
is a self-bounding random variable. 1-inclusion graphs were introduced in Haussler,
Littlestone, and Warmuth (1994). Their combinatorial properties were used to
investigate the behavior of some online classification algorithms. The analysis of 1-
inclusion graphs proved also useful when deriving sharp bounds on the universal
entropy of VC-classes.

13.13. (VC-SUBGRAPH CLASSES OF FUNCTIONS) The subgraph of a function f :
X → R is the set {(x, t) : x ∈ X , t ∈ R, t < f (x)}. A classF of functionsX → R

is VC-subgraph with VC-dimension V if the collection of all subgraphs defined by
choosing f ∈ F is a VC-class of subsets of X × R with VC-dimension V . For
any probability measure Q on X , let ‖f‖Q be the L2(Q) norm of f . Prove that
for any VC-subgraph class of functions with VC-dimension V and envelope F (i.e.
supf∈F |f (x)| ≤ F(x) for all x ∈ X ), and any Q , the packing numbers of F with
respect to the L2(Q)-pseudometric satisfy

N (δ‖F‖Q ,F ,Q) ≤ κ(V + 1)(16e)V+1
(
1
δ

)2V

.

Hint: use E[| f (X) – f ′(X)|]=Q ⊗ λ{(x, t) : f (x) ≤ t < f ′(x)∧f ′(x) ≤ t < f (x)}
where X is distributed according to Q and also that E[| f (X) – f ′(X)|2] ≤
E[| f (X) – f ′(X)|2F(X)]. Use Theorem 13.6. See van der Vaart andWellner (1996,
Chapter 2.6).

13.14. (VC-MAJOR CLASSES OF FUNCTIONS) A classF of real-valued functions defined
on a set X is a VC-major class with VC-dimension V if the collection of all subsets
{x : x ∈ X f (x) > t} defined by choosing f ∈ F and t ∈ R is a VC-class of subsets
of X with VC-dimension V . Prove that a bounded VC-major class of functions is a
multiple of the symmetric convex hull of a VC-class of indicator functions.Hint: use
the fact that if 0 ≤ f ≤ 1, f (x) = limm→∞

∑m
i=1 1/m1{ f (x)>i/m} (van der Vaart and

Wellner, 1996, Chapter 2.6).
13.15. (REGULARLY VARYING UNIVERSAL ENTROPY NUMBERS AND SUPREMA OF

EMPIRICAL PROCESSES) A measurable function f : R+ → R is said to be regu-
larly varying at∞with regular variation index α ∈ R, if f (x) > 0 for all sufficiently
large x and for all x ∈ R+, limt→∞ f (tx)/f (t) = xα . Let (As)s∈T be some count-
able class of measurable subsets ofX . Assume there exists a nonincreasing function
ψ : (0, 1] → R such that ψ(1/x) is regularly varying with regular variation index
smaller than 2 such that

H(δ, T ) ≤ ψ(δ)
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where H(δ) = supQ logN(δ, T ,Q) is the universal δ-metric entropy of T as
defined in Section 13.3. Assume that σ ∈(0, 1) is such that P(As)≤σ 2, for every
s ∈ T . Let X1, . . . ,Xn drawn i.i.d. from the distribution P onX and let

Z+
T = sup

s∈T
1√
n

n∑
i=1

(1{Xi∈As} – P{Xi ∈ As})

Z–
T = sup

s∈T
1√
n

n∑
i=1

(P{Xi ∈ As} – 1{Xi∈As}).

Then there exists a universal constant K (that may depend on ψ but not on σ )
such that

max (EZ–
T ,EZ

+
T ) ≤ Kσ

√
ψ(σ/2).

Hint: check first that

EZ+
T ≤ K

√
σ 2 + EZ+

T /
√
n
∫ σ/2

0

√
ψ(u)du.

Check that
√

ψ(1/x)/x2 is regularly varying of index smaller than –1 and use
Karamata’s theorem (Bingham, Goldie, and Teugels, 1987) to deduce that

lim
σ→0+

∫ σ/2

0

√
ψ(u)du =

1
1 – α/2

σ

2

√
ψ(σ/2).

See also Giné, Koltchinskii, andWellner (2003), andGiné and Koltchinskii (2006).
13.16. (EMPIRICAL PROCESSES INDEXED BY CLASSES OF BOUNDED FUNCTIONS)

Consider the same setting as in Exercise 13.15, but instead of assuming that the
functions indexed by T are {0, 1}-valued, assume that they take their values in
[0, 1]. Derive comparable upper bounds for suprema of empirical processes. Hint:
the only difficult part consists of upper bounding Eδ2n = E sups∈T Pn f 2s as a func-
tion of σ 2 andEZ+

T . Use symmetrization and the contraction principle to prove that
Eδ2n ≤ σ 2 + 8EZ+

T /
√
n.

13.17. Assume {fs : s ∈ T } is a pointwise separable class of functions mapping from
X → R with envelope function g (i.e. ∀x ∈ X ,∀s ∈ T , | fs(x)| ≤ g(x) ≤ b where
b ∈ R). Assume there exists κ > 0 and a nonincreasing functionψ : R+ → R such
that ψ(1/x) is regularly varying with index smaller than 2 and for all probability
distributionQ ,

log(δ, T ,Q) ≤ ψ

(
κ‖g‖L2(Q)

δ

)
.

LetX1, . . . ,Xn be independently distributed according toP. Assume thatEfs(X)2 ≤
σ 2 for all s ∈ T . Let Z and Z– be defined as in Theorem 13.7. Prove that there exists
a universal constant κ ′ (that may depend onψ but not on σ , P, or T ) such that
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max (EZ,EZ–) ≤ κ ′σ
(

ψ

(
κ‖g‖L2(P)

σ

))1/2

provided σ ≥
√

ψ(κ‖g‖L2(P)/σ ). This result generalizes Theorem 13.7 where the
trivial constant envelope is used (see Theorem 3.1, Giné and Koltchinskii 2006).

13.18. (THE LOGARITHMIC FACTOR IN THEOREM 13.7) The Kolmogorov–Smirnov
statistics is an example where the factor

√
log(E/σ ) can be dropped in

Theorem 13.7. Let T = Q ∩ [0, σ ] for some σ ∈ (0, 1]. For s ∈ T , let As = [0, s].
Let U1, . . . ,Un be independently and uniformly distributed over [0, 1] and let
Xi,s = 1{Ui∈As} – s. Check that (As)s∈T is a VC class with VC-dimension 1. Prove that
for σ ∈ (0, 1],

E

[
1√
n

sup
s∈[0,σ 2]

n∑
i=1

Xi,s

]
≤ 4σ .

Hint: use the symmetrization inequalities (Theorem 11.4), Lemma 11.12, and
Hoeffding’s inequality. Note that Theorem 3.1 from Giné and Koltchinskii (2006)
can be used to prove that the logarithmic term is not necessary. This can be done
by choosing carefully the envelope function. This result can be generalized to
multidimensional cumulative distribution functions.

13.19. (SUPREMA OF EMPIRICAL PROCESSES INDEXED BY BALLS IN HILBERT SPACES
OF FUNCTIONS) Let X,X1, . . . ,Xn be independently distributed according to P.
Let L2(P) be the set of functions such that Ef (X)2 < ∞. Let T be a d-dimensional
subspace of centered functions from L 2(P). Prove that

E sup
f∈T

E[ f (X)2]≤R2

n∑
i=1

f (Xi) ≤ 2R
√
nd.

Hint: use symmetrization. See also Exercise 13.5. Note that if the unit ball of
T has an envelope function F that satisfies Emaxi=1,...,n F(Xi)2 ≤ nd/κ2 then the
expectation can be lower bounded by R

√
nd/(2κ). See Koltchinskii, (2008).

13.20. (SUPREMA OF EMPIRICAL PROCESSES INDEXED BY INTERSECTION OF ELLIPS-
OIDS) Let X,X1, . . . ,Xn be independently distributed over X according to P. Let
L2(P) be the set of functions onX such that Ef (X)2 < ∞. Assume (gj)1≤j≤d is an
orthonormal system of centered functions in L2(P), and let (λj)j≤d be a sequence of
positive integers. Let

E1(R) =

⎧⎨⎩f : f =
d∑
j=1

αjgj,
d∑
i=1

α2
j

λj
≤ R2

⎫⎬⎭ ,

E2(R) =

⎧⎨⎩f : f =
d∑
j=1

αjgj,
d∑
i=1

α2
j ≤ R2

⎫⎬⎭ .
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Prove that

E sup
f∈E1(1)∩E2(R)

n∑
i=1

f (Xi) ≤ 4

√√√√n
d∑
j=1

λj ∧ R2.

Hint: use symmetrization. See also Exercise 13.5. This problem arises in statistical
learning theory in the analysis of the so-called kernel machines (see Mendelson
(2002a), Cucker and Zhou (2007), Steinwart and Christmann (2008) for more
material on the role of reproducing kernel Hilbert spaces in statistical learning
theory).

13.21. (MAXIMAL INEQUALITIES FOR CONVEX HULLS OF VC-CLASSES) The symmet-
ric convex hull of a collectionF of functions onX is defined by

sconv(F) =

{
k∑
i=1

λifi : k ∈ N,
k∑
i=1

|λi| ≤ 1, fi ∈ F for 1 ≤ i ≤ k

}
.

Prove that for some universal constant κ > 0,

E sup
g∈sconv(F)

∣∣∣∣∣
n∑
i=1

εig(Xi)

∣∣∣∣∣ ≤ κE sup
f∈F

∣∣∣∣∣
n∑
i=1

εif (Xi)

∣∣∣∣∣,
where the X1, . . . ,Xn are independently distributed over X and ε1, . . . , εn are
independent Rademacher variables. See van der Vaart andWellner (1996).

Norms of sums of random vectors

13.22. (METRIC ENTROPY OF UNIT BALLS) For p ∈ [1,∞], and positive integer d, let
Bdp be the unit ball of �

d
p. Prove that ε-entropy of B

d
p under the �dp metric H

(
ε,Bdp

)
satisfies

d log
1
ε
≤ H

(
ε,Bdp

)
≤ d log

(
1 +

2
ε

)
.

Hint: use a volume argument. For any 0 < ε < 1, �dp balls of radius ε/2 centered on
an ε-net for Bd

p are disjoint and included in (1 + ε/2)Bd
p. The volume of εBdp is εd

times the volume of Bdp . Meanwhile, Bdp is included in the union of �
d
p balls of radius

ε centered on a ε-net for Bdp.
13.23. (ON THE CONSTANTS IN NEMIROVSKI’S INEQUALITY) Recall the notation and

setup of Theorem 13.10 and let V =
∑n

i=1 E‖Xi‖2p denote the “strong variance.”
Prove that

E‖Sn‖2p ≤ K(p, d)V ,
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where

K(p, d) =

{
d 2/p–1 if 1 ≤ p ≤ 2
d1–2/p if 2 ≤ p ≤ ∞.

(Nemirovski, 2000.)
13.24. (AN IMPROVEMENT) Using the notation of the previous exercise, prove that for

p ≥ 2, one may choose

K(p, d) ≤ inf
q∈[2, p]∪R

(q – 1)d2/q–2/p

(see Duembgen et al. 2010).
13.25. (NEMIROVSKI’S INEQUALITY AND THE BANACH–MAZUR DISTANCE) LetB and

B′ denote two Banach spaces. The Banach–Mazur distance dbm(B,B′) between B

andB′ is defined as

inf
{‖T‖ · ‖T–1‖ : T is an isomorphism betweenB andB′},

where ‖T‖ = sup{‖Tx‖B′/‖x‖B : x ∈ B}. Prove that if Xi are independent ran-
dom vectors fromB, and Sn =

∑n
i=1 Xi, then

E‖Sn‖2B ≤ (dbm(B,H))2 V

whereH is any Hilbert space (Duembgen et al. 2010).
13.26. (DISTRIBUTION OF Wi(α)2 –Wi(α′)2) Using the notation of Section 13.6

and assuming that (Xi, j)i≤d, j≤D are independent standard Gaussian, prove that
Wi(α)2 –Wi(α′)2 is distributed like sin(θ)Y1 – sin(θ)Y2 where θ is the angle
between α and α′, and Y1, Y2 are independent χ2

1 -distributed random variables.
Deduce from this exact representation that for λ < d/(8‖α – α′‖),

logEeλ(‖W(α)‖2–‖W(α′)‖2) = –
d
2
log

(
1 –

4λ2(1 – 〈α,α′〉2)
d2

)
≤ λ28‖α – α′‖2)/d

2 (1 – 8λ‖α – α′‖/d) .

13.27. (STAR SHAPING) For i = 1, . . . , n, let Xi = (Xi,s)s∈T be independent identically
distributed centered random vectors. For r ≥ 0, let Tr = {s : s ∈ T , E[X2

i,s] ≤ r2}.
Let L be a function on T that satisfies E[X2

i,s]
1/2 ≤ L(s). Assume that for all

s ∈ T , |Xi,s| ≤ 1 almost surely. Prove that the function

ψ∗(r) = E sup
s∈T ,α∈[0,1]

αL(s)≤r

n∑
i=1

αXi,s.
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defined for r ≥ 0 is sub-linear. Prove that for every r > 0,

E sup
s∈T

r
max(r, L(s))

n∑
i=1

Xi,s ≤ ψ∗(r).

The so-called “star-shaping” technique, originally used in asymptotic geometry, has
been successfully used in statistical learning theory (see Bartlett and Mendelson
(2006),Mendelson and Philips (2004),Mendelson (2003, 2002b, 2002a), Bartlett,
Bousquet, andMendelson (2002b), and Bartlett andMendelson (2002)).

13.28. (LIE PRODUCT FORMULA) Let A,B be n× nmatrices (not necessarily symmetric
or Hermitian). The exponential of a matrix exp(A) is defined by the power series
expansion exp(A) =

∑∞
n=0 A

n/n!. Prove that

exp(A + B) = lim
m→∞

(
exp

A
m
exp

B
m

)m

.

Hint: first check that for any n× nmatrices X, Y ,

‖Xm – Ym‖ ≤ m(max(‖X‖, ‖Y‖))m–1‖X – Y‖.
Then apply this bound to Xm = exp

(A+B
m

)
and Ym = exp A

m exp B
m to show that

‖Xm
m – Ym

m‖ = O(1/m). See Bhatia (1997, Chapter IX), and the references therein.
13.29. (GOLDEN–THOMPSON INEQUALITY) Let A and B be two n× n Hermitian

matrices. Prove that

trace(exp(A + B)) ≤ trace(exp(A) exp(B)).

Hint: check first that for any twoHermitian positive semi-definite matricesX, Y , for
allm = 1, 2, . . . ,

trace
(
(XY)2m

) ≤ trace
(
(X2Y2)m

)
.

Combine this inequality with the Lie product formula (Exercise 13.28) using
X = exp(A/m), Y = exp(B/m) with m = 2k+1, take k to infinity and use the con-
tinuity of the trace to conclude. The Golden–Thompson inequality is a special case
of the following more general statement: if f is a complex-valued function over the
space of matrices that satisfies f (XY) = f (YX) and |f

(
X2m)| ≤ |f

(
(XX∗)m

)
|, then

0 ≤ f (exp(A + B)) ≤ f (expA expB) for any Hermitian matrices A,B. See Bhatia
(1997, Chapter IX).

13.30. (RUDELSON’S INEQUALITY FOR RADEMACHER SUMS) Let A1, . . . ,An be sym-
metric d× d matrices. Let X1, . . . ,Xn be independent Rademacher random vari-
ables. Let Z = ‖∑n

i=1 XiAi‖ and σ 2 =
∥∥∑n

i=1 A
2
i

∥∥. Prove that
Var (Z) ≤ σ 2 and EZ ≤

√
π log(2d)σ .
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Hint: the proof of the variance bound parallels the proof of the Gaussian case in
Theorem 13.8. Replace Exercise 3.24 by Example 3.6. The proof of the upper bound
on expectation follows from Theorem 13.8 by a general comparison argument (see
Exercise 11.14).

13.31. (MATRIX HOEFFDING INEQUALITIES) LetX1, . . . ,Xn be independent symmetric
d× dmatrices. LetA1, . . . ,An be deterministic symmetric d× dmatrices. Let ‖ · ‖
denote the operator norm. Assume EXi = 0 and A2

i – X
2
i is positive semi-definite

almost surely for all 1 ≤ i ≤ n. LetZ =
∥∥∑n

i=1 Xi
∥∥ and σ 2 =

∥∥∑n
i=1 A

2
i

∥∥. Prove that
EZ ≤ 2

√
2 log dσ

Var (Z) ≤ σ 2

P {Z ≥ EZ + t} ≤ e–t
2/8.

Hint: use results and methods from Section 13.4, symmetrization inequalities
(Lemma 11.4), and the bounded-differences inequality. See Tropp (2010a).

13.32. (SUMS OF POSITIVE SEMI-DEFINITE MATRICES) Let X1, . . . ,Xn be inde-
pendent symmetric positive semi-definite d× d matrices. Let ‖ · ‖ denote the
operator norm. Assume that ‖Xi‖ ≤ 1 almost surely for all 1 ≤ i ≤ n. Let
Z = ‖∑n

i=1 Xi‖. Prove that Var (Z) ≤ EZ and thatZ satisfies the following Bennett-
style inequalities:

P {Z ≥ EZ + t} ≤ exp
(
–EZh

(
t
EZ

))
for t ≥ 0, while

P {Z ≤ EZ – t} ≤ exp
(
–EZh

(
–t
EZ

))
for 0 ≤ t ≤ EZ, where h(t) = (t + 1) log(t + 1) – t. Prove that EZ satisfies

EZ ≤ 2
√
2 log d

√
EZ +

∥∥∥∥∥E
n∑
i=1

Xi

∥∥∥∥∥.
Hint: to prove the first part, verify that Z = ‖∑n

i=1 Xi‖ is self-bounding and use
Theorem 6.12. The last relation entails EZ ≤ 8 log d + 2

∥∥E∑n
i=1 Xi

∥∥. It is imme-
diately seen that EZ ≥ ∥∥E∑n

i=1 Xi
∥∥. On the other hand, letting n = d, and letting

all Xi be uniformly distributed among the orthogonal projections on the lines gen-
erated by vectors of the canonical basis, it is not hard to verify that EZ is not
smaller than the maximum number of balls that fall into one bin when throwing
d balls into d bins at random. The latter is known to be tightly concentrated around
log(d)/ log(log(d)). Compare with matrix Chernoff bounds in Tropp (2010a) and
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in Ahlswede and Winter (2002). The latter upper bounds the probability that
Z is larger than μ + t by d exp(–μh(t/μ)) where μ =

∥∥E∑n
i=1 Xi

∥∥ . Obviously,
d exp(–μh(t/μ)) ≥ exp

(
–EZh

( t
EZ

))
.

13.33. (BENNETT- AND BERNSTEIN-TYPE INEQUALITIES FOR MATRICES) Let
X1, . . . ,Xn be independent symmetric random d× dmatrices. Let ‖ · ‖ denote the
operator norm. Assume that EXi = 0 and ‖Xi‖ ≤ 1 almost surely for all 1 ≤ i ≤ n.
Let Z = ‖∑n

i=1 Xi‖. Prove that Var (Z) ≤ v = ‖E∑n
i=1 X

2
i ‖ + 2EZ and that Z

satisfies Bennett- and Bernstein-style inequalities with variance factor v and scale
factor 1.Hint: use Bousquet’s inequality. See Tropp (2010a).

Suprema of some classical processes

13.34. (LE CAM’S POISSONIZATION LEMMA) Let T be a finite index set. Let
Xi = (Xi, s)s∈T , i = 1, 2, . . . be independently identically distributed and centered.
Let Nn be a Poisson random variable with expectation n, independent of the Xi.
Prove that (

1 –
1
e

)
E sup

s∈T

n∑
i=1

Xi, s ≤ E sup
s∈T

Nn∑
i=1

Xi, s.

Hint: let (Yi)i∈N be Poisson random variables with expectation 1 independent of the
Xi. Use the fact that the left-hand side equalsE sups∈T

∑n
i=1(E[Yi ∧ 1])Xi, s (van der

Vaart andWellner, 1996).
13.35. (VARIANCE OF THE SUPREMUM OF THE KAC PROCESS) Let T be a finite set. Let

Xi = (Xi,s)s∈T , i = 1, 2, . . . be independently identically distributed and centered
random vectors with |Xi| ≤ 1. Let Nn be a Poisson random variable with expect-
ation n, independent of theXi. LetNn be Poisson distributed with expectation n and
independent of theXi. LetZk = sups∈T

∑k
i=1 Xi,s. The supremumof theKac process

is defined by

Z = sup
s∈T

Nn∑
i=1

Xi, s = ZNn .

Let σ 2 = sups∈T EX2
1, s. Prove that

Var (Z) ≤ ENnσ
2 + 2EZ

+ENnE

⎡⎣(E[sup
s∈T

Nn+1∑
i=1

Xi,s – sup
s∈T

Nn∑
i=1

Xi,s

∣∣∣Nn

])2
⎤⎦

≤ ENnσ
2 + 2EZ + ENnE

[(
E[Zmax(Nn ,1)|Nn]
max(Nn, 1)

)2
]
.
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Hint: use the Poisson Poincaré inequality (Exercise 3.21) and Theorem 11.10.
13.36. (VARIANCE OF THE SUPREMUM OF THE KAC PROCESS, CONTINUED)Using the

notation of Exercise 13.35, prove that

Var (Z) ≤ E sup
s∈T

Nn∑
i=1

X2
i,s + ENn sup

s∈T
EX2

1,s,

See Reynaud-Bouret (2003, page 109).
13.37. (VARIANCE OF THE SUPREMUM OF THE KAC PROCESS INDEXED BY A VC-

CLASS) Use the notation of Theorem 13.7 and Exercise 13.35 to prove that the
variance of the Kac process indexed by a VC class with VC dimension V , where each
set has probability at most than σ 2, is upper bounded by

nσ 2 + κσ

√
Vn log

e
σ

+ κVσ 2 log
e
σ
,

where κ is a universal constant.
13.38. (CRAMÉR–VON MISES STATISTIC). The Cramér–vonMises statistis is defined as

Z2 = n
∫ 1

0
(Pn([0, x]) – x)2dx,

where Pn([0, x]) =
∑n

i=1 1{Xi≤x} is the empirical measure defined by X1, . . . ,Xn
that are independently distributed according to the uniform distribution. Show that
Z is the supremumof an empirical process. Derive an upper bound forEZ. Compute
the Efron–Stein upper bounds for Var (Z).Hint: use the Riesz–Fischer theorem to
represent Z as the supremum of an empirical process. Denoting by T the class of
rational sequences (si)i≤N with

∑
i∈N s2i = 1, prove that

Z = sup
s∈T

∞∑
i=1

√
n
∫ 1

0
si
√
2 sin(2π ix)(Pn([0, x]) – x)dx

(van der Vaart andWellner, 1996, Chapter 2.13).
13.39. (ANDERSON–DARLING STATISTIC) The Anderson–Darling statistic is defined by

Z2 = n
∫ 1

0

(Pn([0, x]) – x)2

x(1 – x)
dx.

Prove that Z is the supremum of an empirical process. Compute the Efron–Stein
upper bound on the variance of Z and compare it to EZ2 = 1. Hint: proceed as in
the previous exercise.
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13.40. (HIGHER CRITICISM STATISTIC) Define the higher-criticism statistic by

Z = sup
s∈[1/√n,1–1/

√
n]

√
n

∣∣Pn([0, s]) – s∣∣√
s(1 – s)

where Pn denotes the empirical distribution defined by a sample X1, . . . ,Xn
drawn independently from the uniform distribution over [0, 1], Use the tools
of Section 13.7 to show that EZ ≤ √

2 log log n. Prove that the variance of Z is
bounded by a function of 1/(2 log log n).Hint: it is known that

P

⎧⎨⎩√2 log log n

⎛⎝Z –

⎛⎝√2 log log n +
log

√
log log n
2π√

2 log log n

⎞⎠⎞⎠ < t

⎫⎬⎭→ e–e
–t
,

that is, that after centering and rescaling, Z converges in law to a Gumbel distri-
bution. See Donoho and Jin (2004), Jaeschke (1979), and de Haan and Ferreira
(2006).

13.41. (PROPERTIES OF SUB-LINEAR FUNCTIONS) Recall that ψ : [0,∞) → [0,∞)
is sub-linear if it is non-decreasing, continuous, ψ(x)/x is nonincreasing, and
ψ(1) ≥ 1. Prove the following: (a) If ψ and ρ are sub-linear then so are ψ ◦ ρ

and ψ + ρ. (b) For any α ≥ ψ(1), the equation αr2 = ψ(r) has a unique solution
in (0, 1]. (c) Ifψ is sub-linear, thenψ(u + v) ≤ ψ(u) + ψ(v). (d) If X is a positive
random variable, then Eψ(X) ≤ 2ψ (EX).

13.42. Let ψ and ρ denote non-trivial sub-linear functions. Let r∗ denote the unique
positive solution of the equation

√
nr2 = ψ(ρ(r)). For some a, b, c ∈ [0,∞) with

a ≥ 1, let u denote the unique solution of equation r2 = a√
nψ(ρ(r)) + b√

nρ(r) + c.
Check that

u2 ≤ 2
(
a2 + b2

)
r2∗ + 2c.

See Koltchinskii (2006), Massart and Nédélec (2006), andMassart (2000b, 2006).
13.43. (JOHNSON–LINDENSTRAUSS THEOREM FOR SPARSE VECTORS) Consider the

notation of Lemma 13.13. For a subsetA ⊆ RD, let conv(A) denote the convex hull
of A and for λ > 0, let λA = {λx : x ∈ A} and A – A = {x – y : x, y ∈ A}. Let A be
the subset of unit vectors of RD whose components of index larger than k are zero.
For 0 < ε < 1, let Aε be an ε-net for A. Prove that for 0 < ε < 1, A ⊆ 2conv(Aε).
Use this inclusion and the contraction principle (see Lemma 11.5 and Exercise
11.11) to establish that

E sup
α∈A

‖W(α)‖ ≤ 2E sup
α∈Aε

‖W(α)‖.

Use this result to give another proof of Lemma 13.13. See Mendelson, Pajor, and
Tomczak-Jaegermann (2008).
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�-Entropies

In Chapter 3 we introduced a machinery that allows us to derive bounds for the variance
of a function of independent random variables. Then, in Chapters 5 and 6, with the help of
logarithmic Sobolev inequalities and theirmodifications, wewere able to derive exponential
concentration inequalities, somewhat analogous to the Efron–Stein inequality. We call this
the entropy method because it is based on a crucial sub-additivity property of the entropy,
shown in Chapter 4. A necessary condition for the entropy method to work is the finiteness
of the moment-generating function of the random variable of interest.

The purpose of this chapter and the next is to introduce a methodology to bound higher
moments of functions of independent random variables. This method, though more tech-
nical than the entropy method, is at least as powerful and works for random variables that
are not necessarily exponentially integrable.

Our approach is based on a generalization of the entropy method. The basic pillar of
the method is the introduction of certain convex functionals of random variables that
we call �-entropies. These functionals may be thought of as a common generalization of
the variance and the entropy of a random variable.

In Section 14.1 we start by investigating the sub-additivity properties of �-entropies.
We establish a duality formula, generalizing the one proved for the “ordinary” entropy in
Section 4.9 and characterize�-entropies that are sub-additive.

The next step in our program of extending the entropy method consists of deriving
inequalities that we name “�-Sobolev inequalities,” generalizing the modified logarithmic
Sobolev inequalities obtained in Sections 6.3 and 6.8. This is done in Section 14.2.

We close this chapter by deriving, in Section 14.3, sharp �-Sobolev inequalities for
Bernoulli distributions. As a corollary, we obtain the optimal constant of the logarithmic
Sobolev inequality for unbalanced Bernoulli distributions.

14.1 �-Entropy and its Sub-Additivity

Let � : [0,∞) → R be a convex function and assign, to every nonnegative integrable
random variable Z, the number

H�(Z) = E�(Z) – �(EZ).
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By Jensen’s inequality,H�(Z) is always nonnegative. We callH�(Z) the�-entropy of Z.
Observe that with �(x) = x2, the �-entropy is just the variance of Z, while for

�(x) = x log x,H�(Z) reduces to the “ordinary” notion of entropy introduced in Chapter
4. In the next chapter we show that other choices of �, in particular, �(x) = xa for
a ∈ (1, 2], yield interesting variants and an appropriatemodification of the entropymethod
based on such�-entropies leads to non-trivial moment inequalities.

As before, we are interested in random variables Z that are functions of independ-
ent random variables. In particular, we consider Z = f (X1, . . . ,Xn) where X1, . . . ,Xn are
independent random variables taking values in a set X and f is a nonnegative function
onX n.

The key property that we need is the following sub-additivity inequality of�-entropies:

H�(Z) ≤ E
n∑
i=1

H(i)
� (Z)

where H(i)
� (Z) = E(i)�(Z) – �(E(i)Z) is the conditional entropy and, as before,

E(i) denotes conditional expectation conditioned on the n – 1-vector X(i) =
(X1, . . . ,Xi–1,Xi+1, . . . ,Xn).

When �(x) = x2, this sub-additivity property is just the Efron–Stein inequality
(Theorem 3.1), while with �(x) = x log x it becomes the sub-additivity inequality of the
“ordinary” entropy (see Theorem 4.22).

Here we show that �-entropies are sub-additive for a large class of convex functions �.
In fact, we characterize the class of functions� that give rise to entropy functionals with the
sub-additive property.

First we point out that sub-additivity is equivalent to a simple “Jensen-type” inequal-
ity. On the one hand, observe that for n = 2 and setting Z = f (X1,X2), the sub-additivity
property reduces to

H�

(∫
f (x,X2)dμ1(x)

)
≤
∫

H� ( f (x,X2)) dμ1(x), (14.1)

where μ1 denotes the distribution of X1. On the other hand, (14.1) implies the sub-
additivity property. Indeed let Y1 be distributed like X1, and let Y2 be distributed like
the n – 1-tuple X2, . . . ,Xn. Let μ1 and μ2 denote the corresponding distributions. Then
Z = f (Y1, Y2) is a measurable function of the two independent random variables Y1 and Y2.
By the Tonelli–Fubini theorem,

H�(Z) =
∫∫ (

�( f (y1, y2)) – �

(∫
f (y′1, y2)dμ1(y′1)

)
+ �

(∫
f (y′1, y2)dμ1(y′1)

)
– �

(∫∫
f (y′1, y

′
2)dμ1(y′1)dμ2(y′2)

))
dμ1(y1)dμ2(y2)
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=
∫ (∫ [

�( f (y1, y2)) – �

(∫
f (y′1, y2)dμ1(y′1)

)]
dμ1(y1)

)
dμ2(y2)

+
∫ (

�

(∫
f (y′1, y2)dμ1(y′1)

)
– �

(∫∫
f (y′1, y

′
2)dμ1(y′1)dμ2(y′2)

))
dμ2(y2)

=
∫

H�( f (Y1, y2))dμ2(y2) + H�

(∫
f (y′1, Y2)dμ1(y′1)

)
≤
∫

H�( f (Y1, y2))dμ2(y2) +
∫

H� ( f (y′1, Y2)) dμ1(y′1),

where the last step follows from (14.1). In other words, we get

H�(Z) ≤ EH(1)
� (Z) +

∫
H� ( f (x1,X2, . . . ,Xn)) dμ1(x1).

Proceeding by induction, (14.1) leads to the sub-additivity property for every n.
Thus, the sub-additivity property of H� is equivalent to what we could call the Jensen

property, that is, (14.1). This implies that in order to prove sub-additivity of a�-entropy, it
suffices to show that it has the Jensen property.

We establish that the functionalH� satisfies the Jensen property by following the lines of
the proof of the sub-additivity property for the “usual” entropy shown in Section 4.13. The
key of this proof is a duality formula that expressesH� as a supremum of affine functions.

Theorem 14.1 (SUB-ADDITIVITY OF �-ENTROPY) Let C denote the class of functions
� : [0,∞) → R that are continuous and convex on [0,∞), twice differentiable on
(0,∞), and such that either � is affine or �′′ is strictly positive and 1/�′′ is concave.
For all� ∈ C , the entropy functional H� is sub-additive.

As mentioned above, the main ingredient of the proof of Theorem 14.1 is a duality
formula for�-entropy of the form

H� (Z) = sup
T∈T

E [ψ1 (T)Z + ψ2 (T)] ,

for convenient functions ψ1 and ψ2 and a suitable class of nonnegative variables T .
Such a formula obviously implies that the functional H� is convex. On the other hand,
it also implies the Jensen property and therefore the sub-additivity property for H� by
the following simple argument: consider again Z = f (Y1, Y2) as a function of Y1 = X1 and
Y2 = (X1, . . . Yn). Then
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H�

(∫
f (y1, Y2)dμ1(y1)

)
= sup

T∈T

∫ [
ψ1(T(y2))

∫
f (y1, y2)dμ1(y1) + ψ2(T(y2))

]
dμ2(y2)

(by Fubini’s theorem)

= sup
T∈T

∫ (∫ [
ψ1(T(y2))f (y1, y2) + ψ2(T(y2))

]
dμ2(y2)

)
dμ1(y1)

≤
∫ (

sup
T∈T

∫ [
ψ1(T(y2))f (y1, y2) + ψ2(T(y2))

]
dμ2(y2)

)
dμ1(y1)

=
∫

H�( f (y1, Y2))dμ1(y1).

Thus, in order to complete the proof of Theorem 14.1, the following lemma is sufficient.
Denote the convex set of nonnegative and integrable random variables Z byL+

1 .

Lemma14.2 (DUALITY FORMULA FOR �-ENTROPIES)Let� ∈ C and Z ∈ L+
1 . If� (Z)

is integrable, then

H�(Z) = sup
T∈L+

1 ,T�=0

{
E
[(

�′ (T) – �′ (ET)
)
(Z – T) + �(T)

]
– � (ET)

}
.

Proof The case when � is affine is trivial: H� equals zero, and so does the expression
defined by the duality formula.

Note that the expression within the brackets on the right-hand side equals H�(Z)
for T = Z, so the proof of Lemma 14.2 amounts to checking that

H�(Z) ≥ E
[(

�′(T) – �′ (ET)
)
(Z – T) + �(T)

]
– � (ET)

under the assumption that�(Z) is integrable and T ∈ L+
1 .

Assume first that Z and T are bounded and bounded away from 0. For any
λ ∈ [0, 1], we set Tλ = (1 – λ)Z + λT and

g(λ) = E
[(

�′ (Tλ) – �′ (ETλ)
)
(Z – Tλ)

]
+ H� (Tλ) .

Our aim is to show that the function g is nonincreasing on [0, 1]. Noticing that
Z – Tλ = λ(Z – T) and using our boundedness assumptions to differentiate under the
expectation, we have

g′(λ) = – λ
(
E
[
(Z – T)2 �′′ (Tλ)

]
– (E [Z – T])2 �′′ (ETλ)

)
+E

[
(�′ (Tλ) – �′ (ETλ)) (Z – T)

]
+E

[
�′ (Tλ) (T – Z)

]
– �′ (ETλ)E [T – Z] ,
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that is,

g′(λ) = –λ
(
E
[
(Z – T)2 �′′ (Tλ)

]
– (E [Z – T])2 �′′ (ETλ)

)
.

Now, by the Cauchy–Schwarz inequality,

(E [Z – T])2 =

(
E

[
(Z – T)

√
�′′ (Tλ)

1√
�′′ (Tλ)

])2

≤ E
[

1
�′′ (Tλ)

]
E
[
(Z – T)2 �′′ (Tλ)

]
.

Using the concavity of 1/�′′, Jensen’s inequality implies that

E
[

1
�′′ (Tλ)

]
≤ 1

�′′ (ETλ)
,

which leads to

(E [Z – T])2 ≤ 1
�′′ (ETλ)

E
[
(Z – T)2 �′′ (Tλ)

]
,

which is equivalent to g′(λ) ≤ 0 and therefore g(1) ≤ g(0) = H�(Z). This means
that for any T, E

[
(�′(T) – �′ (ET)) (Z – T)

]
+ H�(T) ≤ H� (Z).

In the general case we consider the sequences Zn = (Z ∨ 1/n) ∧ n and Tk =
(T ∨ 1/k) ∧ k and our purpose is to take the limit, as k, n → ∞, in the inequality

H�(Zn) ≥ E
[
(�′ (Tk) – �′ (ETk)) (Zn – Tk) + � (Tk)

]
– � (ETk) ,

which we can also write as

E
[
ψ(Zn,Tk)

] ≥ –�′ (ETk)E [Zn – Tk] – � (ETk) + � (EZn) , (14.2)

whereψ(z, t) = �(z) – �(t) – (z – t)�′(t). Since we have to show that

E [ψ (Z,T)] ≥ –�′ (ET)E [Z – T] – �(ET) + �(EZ) (14.3)

with ψ ≥ 0, we can always assume ψ (Z,T) to be integrable (since otherwise
(14.3) is trivially satisfied). Taking the limit when n and k go to infinity on
the right-hand side of (14.2) is easy, while the treatment of the left-hand side
requires some care. Note that ψ(z, t), as a function of t, decreases on (0, z) and
increases on (z,∞). Similarly, as a function of z, ψ(z, t) decreases on (0, t) and
increases on (t, +∞). Hence, for every t,ψ(Zn, t) ≤ ψ(1, t) + ψ(Z, t) while for every
z,ψ(z,Tk) ≤ ψ(z, 1) + ψ(z,T). Hence, given k,

ψ(Zn,Tk) ≤ ψ(1,Tk) + ψ(Z,Tk),
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as ψ((z ∨ 1/n) ∧ n,Tk) → ψ(z,Tk) for every z, we can apply the dominated
convergence theorem to conclude that Eψ(Zn,Tk) converges to Eψ(Z,Tk) as
n → ∞. Hence, we have

Eψ(Z,Tk) ≥ –�′ (ETk)E [Z – Tk] – � (ETk) + � (EZ) .

Now we also have ψ(Z,Tk) ≤ ψ(Z, 1) + ψ(Z,T) and we can apply the domin-
ated convergence theorem again to ensure that Eψ(Z,Tk) converges to Eψ(Z,T) as
k → ∞. Taking the limit as k → ∞ implies that (14.3) holds for every T,Z ∈ L+

1
such that �(Z) is integrable and ET > 0. If Z �= 0 a.s., (14.3) is achieved for T = Z
while if Z = 0 a.s., it is achieved for T = 1 and the proof of the lemma is now complete
in its full generality. �

Remark 14.4 Note that since the supremum in the duality formula of Lemma 14.2
is achieved for T = Z (or T = 1 if Z = 0), the duality formula remains true if the
supremum is restricted to the class T� of variables T such that �(T) is integrable.
Hence, we may also write the alternative formula

H�(Z) = sup
T∈T�

{
E
[
(�′(T) – �′(ET)) (Z – T)

]
+ H�(T)

}
.

Remark 14.5 Note that Lemma 14.2 generalizes the duality formula of Theorem 4.13 for
the “usual” entropy. Indeed, taking�(x) = x log x, we get

Ent(Z) = sup
T

{E [(log (T) – log (ET))Z]}

where the supremum is extended to the set of nonnegative and integrable random vari-
ables T with ET > 0. Another case of interest is �(x) = xp, with p ∈ (1, 2]. In this
case, one has, by the previous remark,

H�(Z) = sup
T

{
pE
[
Z
(
Tp–1 – (ET)p–1

)]
– (p – 1)H�(T)

}
,

where the supremum is extended to the set of nonnegative variables inLp.

Remark 14.6 For the sake of simplicity we have focused on nonnegative variables and con-
vex functions � on [0,∞). This restriction can be suppressed and one may consider
� that is a convex function on R and define the �-entropy of a real-valued integrable
random variable Z by the same formula as in the nonnegative case. Assuming this time
that� is differentiable onR and twice differentiable onR \ {0}, the proof of the dual-
ity formula above can be easily adapted to cover this case provided that 1/�′′ can be
extended to a concave function on R. In particular, if �(x) = |x|p, where p ∈ (1, 2],
one gets

H�(Z) = sup
T

{
pE
[
Z
( |T|p

T
–
|ET|
ET

p)]
– (p – 1)H� (T)

}
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where the supremum is extended toLp. Note that for p = 2 this formula reduces to the
classical one for the variance

Var (Z) = sup
T

{
2Cov(Z,T) – Var (T)

}
,

where the supremum is extended to the set of square integrable variables. This means
that the sub-additivity inequality for the�-entropy also holds for convex functions �

onR under the condition that 1/�′′ is the restriction toR \ {0} of a concave function
onR.

We close this section by pointing out that, provided that �′′ is strictly positive, the con-
dition 1/�′′ concave is necessary for the sub-additivity property to hold. In fact, even more
is true: the concavity of 1/�′′ is necessary for the�-entropyH� to be convex on the set of
bounded and nonnegative random variables.

Proposition 14.3 Let� : [0,∞) → R be a strictly convex function which is twice differenti-
able on (0,∞). Let the probability space (�,A,P) be rich enough in the sense that Pmaps
A onto [0, 1]. If H� is convex on the set of of bounded, nonnegative random variables, then
�′′(x) > 0 for every x > 0 and 1/�′′ is concave on (0,∞).

Proof Let θ ∈ [0, 1] and let x, x′, y, y′ > 0. By the assumption on the probability space, we
may define a pair of random variables (X, Y) by

(X, Y) =
{
(x, y) with probability θ

(x′, y′) with probability 1 – θ .

Then convexity ofH� means that

H� (λX + (1 – λ)Y) ≤ λH�(X) + (1 – λ)H�(Y)

for every λ ∈ (0, 1). Defining, for every u, v > 0,

Fλ(u, v) = –� (λu + (1 – λ)v) + λ�(u) + (1 – λ)�(v),

the inequality is equivalent to

Fλ (θ(x, y) + (1 – θ)(x′, y′)) ≤ θFλ(x, y) + (1 – θ)Fλ(x′, y′).

Hence, Fλ is convex on (0,∞)2. This implies, in particular, that the determin-
ant of the Hessian matrix of Fλ is nonnegative at each point (x, y). Thus, setting
xλ = λx + (1 – λ)y,

[
�′′(x) – λ�′′(xλ)

] [
�′′(y) – (1 – λ)�′′(xλ)

] ≥ λ(1 – λ)
[
�′′(xλ)

]2 ,
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which means that

�′′(x)�′′(y) ≥ λ�′′(y)�′′(xλ) + (1 – λ)�′′(x)�′′(xλ).

If �′′(x) = 0 for some point x, we see that either �′′(y) = 0 for every y, which is
impossible because � is assumed to be strictly convex, or there exists some y such
that �′′(y) > 0 and then �′′ is identically equal to 0 on the nonempty open interval
with endpoints x and y, which also contradicts the assumption of strict convexity of�.
Hence�′′ is strictly positive at each point of (0,∞) and the inequality above becomes

1
�′′ (λx + (1 – λ)y)

≥ λ

�′′(x)
+
(1 – λ)
�′′(y)

which implies that 1/�′′ is concave. �

14.2 From�-Entropies to�-Sobolev Inequalities

Now we describe the next step in our program of deriving moment inequalities for func-
tions of independent random variables. The program follows the outline of the entropy
method for proving exponential concentration inequalities. Recall that, after establishing
the sub-additive property of the entropy, we used symmetrization and variational argu-
ments to derive modified logarithmic Sobolev inequalities (recall Theorems 6.6 and 6.15).
The following lemma generalizes these symmetrization and variational arguments.

Lemma 14.4 Let� be a continuous and convex function on [0,∞). Then, denoting by�′ the
right derivative of�, for every nonnegative and integrable random variable Z,

H�(Z) = inf
u≥0

E
[
�(Z) – �(u) – (Z – u)�′(u)

]
.

Let Z′ be an independent copy of Z. Then

H�(Z) ≤ 1
2
E
[
(Z – Z′) (�′(Z) – �′(Z′))

]
= E

[
(Z – Z′)+ (�

′(Z) – �′(Z′))
]
.

If, moreover,ψ(x) = (�(x) – �(0)) /x is concave on (0,∞), then

H�(Z) ≤ 1
2
E
[
(Z – Z′) (ψ(Z) – ψ(Z′))

]
= E

[
(Z – Z′)+ (ψ(Z) – ψ(Z′))

]
.

Proof Without loss of generality, we assume that �(0) = 0. By the convexity of �, for all
u > 0,

–�(EZ) ≤ –�(u) – (EZ – u)�′(u),
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and therefore

H�(Z) ≤ E
[
�(Z) – �(u) – (Z – u)�′(u)

]
.

Since the latter inequality becomes an equality when u = EZ, the variational formula is
proven. Further, since Z′ is an independent copy of Z, we find that

H�(Z) ≤ E
[
�(Z) – �(Z′) – (Z – Z′)�′(Z′)

]
≤ –E

[
(Z – Z′)�′(Z′)

]
and by symmetry,

2H�(Z) ≤ –E
[
(Z′ – Z)�′(Z)

]
– E

[
(Z – Z′)�′(Z′)

]
,

which leads to the second inequality of the lemma. To prove the third inequality, we
simply note that

1
2
E
[
(Z – Z′) (ψ(Z) – ψ(Z′))

]
– H�(Z) = –EZEψ(Z) + �(EZ).

But the concavity of ψ implies that Eψ(Z) ≤ ψ(EZ) = �(EZ)/EZ and the result
follows. �

The next lemma shows that we can apply the third inequality of the lemma whenever
� ∈ C. In particular, for �(x) = xp, with p ∈ (1, 2], it improves on the second inequality
by a factor of p.

Lemma14.5 If� ∈ C , then both�′ andψ(x) = (�(x) – � (0)) /x are concave on (0,∞).

Proof Without loss of generality we may assume that�(0) = 0. If� is strictly convex,

1
�′′((1 – λ)u + λx)

≥ 1 – λ

�′′(u)
+

λ

�′′(x)
(by the concavity of 1/�′′)

≥ λ

�′′(x)
(since by the strict convexity of�,�′′(x) > 0).

In any case, the concavity of 1/�′′ implies that for every λ ∈ (0, 1) and every x, u > 0,

λ�′′ ((1 – λ)u + λx) ≤ �′′(x),

that is, for all t > 0,

λ�′′(t + λx) ≤ �′′(x).
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Letting λ → 1, we see that �′′ is nonincreasing, that is, �′ is concave. Setting
ψ(x) = �(x)/x, one has

x3ψ ′′(x) = x2�′′(x) – 2x�′(x) + 2�(x).

The convexity of � and its continuity at 0 imply that limx→0 x�′(x) = 0. Also, by
concavity of�′,

x2�′′(x) ≤ 2x (�′(x) – �′ (x/2)) ,

so limx→0 x2�′′(x) = 0 and therefore limx→0 x3ψ ′′(x) = 0. Denoting (abusively) by
�(3) the right derivative of�′′ (which is well defined since 1/�′′ is concave) and by γ

the right derivative of x3ψ ′′(x), we have γ (x) = x2�(3)(x). Then γ (x) ≤ 0 since�′′
is nonincreasing. Thus, x3ψ ′′(x) is nonincreasing. Since x3ψ ′′(x) tends to 0 at 0, this
means that x3ψ ′′(x) ≤ 0 and thereforeψ ′′(x) ≤ 0, proving the concavity ofψ . �

Nowwe are prepared to prove analogs of the “modified logarithmic Sobolev inequalities”
of Theorems 6.6 and 6.15. Analogous with this terminology, we may refer to the follow-
ing two theorems asmodified �-Sobolev inequalities. The purpose of these inequalities is to
upper bound the �-entropy of a conveniently chosen convex function of the variable of
interest Z.

In the following,X1, . . . ,Xn denote independent random variables, taking values in some
space X and f : X n → I is a function mapping into a (possibly infinite) interval I ⊂ R.
Let Z = f (X1, . . . ,Xn) and let Z′

i = f (X1, . . . ,X′
i , . . . ,Xn) be obtained by replacing the

variable Xi by an independent copy X′
i .

As in Section 6.9, we introduce the random variables

V+ =
n∑
i=1

E′ [(Z – Z′
i)
2
+
]

and

V– =
n∑
i=1

E′ [(Z – Z′
i)
2
–
]
,

where E′ denotes expectation with respect to the variables X′
1, . . . ,X

′
n only.

If fi : X n–1 → I are arbitrary measurable functions, we write Zi = fi(X(i)) =
fi(X1, . . . ,Xi–1,Xi+1, . . . ,Xn) and

V =
n∑
i=1

(Z – Zi)2.

Then we have the following “�-Sobolev” inequalities.
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Theorem 14.6 Let� ∈ C and let η be a nondecreasing, nonnegative and differentiable convex
function on I . Letψ(x) = (�(x) – �(0)) /x. If the functionψ ◦ η is convex, then

H�(η(Z)) ≤ E
[
V+η′2(Z)ψ ′(η(Z))

]
.

On the other hand, if�′ ◦ η is convex and Zi ≤ Z for all i = 1, . . . , n, then

H�(η(Z)) ≤ 1
2
E
[
Vη′2(Z)�′′ (η(Z))

]
.

Proof First fix x < y and assume that g = �′ ◦ η is convex. Setting

h(t) = �(η(y)) – �(η(t)) –
(

η(y) – η(t)
)
g(t),

we have

h′(t) = –g′(t) (η(y) – η(t)) .

But for every t ≤ y, the monotonicity and convexity assumptions on η and g yield

0 ≤ g′(t) ≤ g′(y) and 0 ≤ η(y) – η(t) ≤ (y – t)η′(y),

hence

–h′(t) ≤ (y – t) η′(y)g′(y).

Integrating this inequality with respect to t on [x, y], we obtain

�(η(y)) – �(η(x)) – (η(y) – η(x))�′(η(x)) ≤ 1
2
(y – x)2 η′2(y)�′′(η(y)).

Now sub-additivity of the �-entropy (Theorem 14.1), combined with the variational
inequality of Lemma 14.4 and the inequality above lead to

H� (η(Z)) ≤ 1
2

n∑
i=1

E
[
(Z – Zi)

2
η′2(Z)�′′ (η(Z))

]
and therefore to the second inequality of the theorem.

Under the assumption thatψ ◦ η is convex, we have

0 ≤ η(y) – η(x) ≤ (y – x)η′(y)

and

0 ≤ ψ(η(y)) – ψ(η(x)) ≤ (y – x)η′(y)ψ ′(η(y)),



� - S O BOL E V I N EQUA L I T I E S FOR B E RNOUL L I R ANDOM VAR I A B L E S | 423

which implies

(η(y) – η(x)) (ψ(η(y)) – ψ(η(x))) ≤ (x – y)2 η′2(y)ψ ′(η(y)).

The first inequality of the theorem follows from here in a similar way, but using the last
inequality of Lemma 14.4. �

The case when η is nonincreasing is handled by the following theorem.

Theorem 14.7 Let � ∈ C and let η be a nonnegative, nonincreasing, and differentiable con-
vex function on I . Let ψ(x) = (�(x) – �(0))/x. If Z̃ is a random variable satisfying
Z̃ ≤ min1≤i≤n Zi and if�′ ◦ η is convex, then

H�(η(Z)) ≤ 1
2
E
[
Vη′2 (Z̃)�′′ (η (Z̃))] ,

while ifψ ◦ η is convex, we have

H�(η(Z)) ≤ E
[
V+η′2 (Z̃)ψ ′ (η (Z̃))]

and

H�(η(Z)) ≤ E
[
V–η′2(Z)ψ ′(η(Z))

]
.

The proof of Theorem 14.7 parallels the proof of Theorem 14.6 and it is left to the reader
as an exercise (see Exercise 14.1).

Observe that by taking η(z) = exp (λz) and �(x) = x log x in Theorems 14.6 and 14.7,
we obtain

Ent(eλZ) ≤ λ2E
[
V+eλZ

]
for λ ≥ 0, while if λ ≤ 0, one has

Ent(eλZ) ≤ λ2E
[
V–eλZ

]
.

We have already derived these inequalities as consequences of the modified logarithmic
Sobolev inequalities of Theorem 6.15.

14.3 �-Sobolev Inequalities for Bernoulli RandomVariables

In this section we present �-Sobolev inequalities for functions of Bernoulli random vari-
ables. In the first part of the section we consider symmetric Bernoulli random variables and
prove a �-Sobolev inequality that contains the Efron–Stein (or Poincaré) inequality and
the logarithmic Sobolev inequality (Theorem 5.1) as special cases for such distributions.
Also, we obtain a family of inequalities that “interpolate” between these extremes.
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In the second half of the sectionwe extend these results to unbalanced Bernoulli distribu-
tions. As a special case, we obtain the logarithmic Sobolev inequality of Theorem 5.2 with
the optimal constants.

Suppose first that the random vector X is uniformly distributed over {–1, 1}n, and let
f : {–1, 1}n → [0,∞) be defined on the n-dimensional binary hypercube.

In Chapter 5 we introduced the functional

E( f ) = 1
4
E

n∑
i=1

(
f (X) – f (X(i))

)2
=
1
2
E

n∑
i=1

(
f (X) – f (X(i))

)2
+
,

where the random binary vector X(i) = (X1, . . . ,Xi–1, –Xi,Xi+1, . . . ,Xn) is obtained by flip-
ping the i-th component of X while leaving the others unchanged. In Chapter 5 we proved
that Var ( f ) ≤ E( f ) and Ent( f 2) ≤ 2E( f ). Both of these results may be regarded as
�-Sobolev inequalities with�(x) = x2 and�(x) = x log x, respectively.

The second inequality – the logarithmic Sobolev inequality for symmetric Bernoulli
distributions – allowed us to establish the Bonami–Beckner inequality (Theorem 5.18).
Here we show that the Bonami–Beckner inequality may, in turn, be used to deduce sharp
�-Sobolev inequalities for �(z) = z2/r for all r ∈ [1, 2). This collection of �-Sobolev
inequalities “interpolate” between the two casesmentioned above, in a sense that we explain
below.

Theorem 14.8 (�-SOBOLEV INEQUALITIES FOR BALANCED BERNOULLI RANDOM
VARIABLES) Let f : {–1, 1}n → [0,∞) and assume that X is uniformly distributed over
{–1, 1}n. Then for all r ∈ [1, 2), letting�(z) = z2/r ,

H�( f r) ≤ (2 – r)E( f ).

Proof If r = 1, the result follows from the Efron–Stein inequality, so we may
assume 1 < r < 2. Recall the notation of Section 5.8: for any S ⊆ {1, . . . , n},
uS(x) =

∏
i∈S xi where x ∈ {–1, 1}n. For γ > 0, the operator Tγ maps a function

f =
∑

S⊂{1,...,n} αSuS to

Tγ f =
∑

S⊂{1,...,n}

γ |S|αSuS.

If γ =
√
r – 1, then by Theorem 5.18,

‖Tγ f‖2 ≤ ‖f‖r .

By the definition of Tγ and the orthogonality of (uS)S⊆{0,1}n ,

‖Tγ f‖22 = E
[
((Tγ f )(X))2

]
= E

[
f (X)(Tγ 2 f )(X))

]
.
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Denoting by Id the identity operator (i.e. Idf = f ), the statement of Theorem 5.18
may be rewritten as

E
[
f (X)2

]
– E

[
f (X)r

]2/r ≤ E
[
f (X)(Id – Tγ 2 )f (X)

]
=

∑
S⊆{1...,n}

α2
S(1 – (r – 1)

|S|).

We may further bound the right-hand side by noticing that 1 – (r – 1)|S| ≤ (2 – r)|S|
for all S ⊂ {1, . . . , n}. Indeed, it holds trivially for |S| = 0 and for |S| ≥ 1 it follows by
the fact that (2 – r)|S| + (r – 1)|S| – 1 is decreasing over [1, 2] (it is convex over [1, 2]
and has zero derivative at r = 2) and equals 0 for r = 2.

Thus,

E
[
f (X)2

]
– E

[
f (X)r

]2/r ≤ (2 – r)
∑

S⊆{1...,n}

α2
S |S| = (2 – r)E( f )

where we use the fact that
∑

S⊆{1...,n} α2
S |S| = E( f ), as established in Section 9.4. �

Observe that one may recover the logarithmic Sobolev inequality of Theorem 5.1 from
Theorem 14.8. Indeed, letting r → 2,

lim
r→2–

E[ f (X)2] – (E[ f (X)r]2/r)
2 – r

=
Ent( f 2)

2
.

Next we address the analog question for unbalanced Bernoulli distributions. We
derive directly a family of optimal �-Sobolev inequalities for this case. Thus, let
p ∈ (0, 1), p �= 1/2. X = (X1, . . . ,Xn) is a vector of independent random variables with
P{Xi = 1} = p = 1 – P{Xi = –1}. The functional E is defined accordingly:

E( f ) = p(1 – p)E
n∑
i=1

(
f (X) – f (X(i))

)2
.

Theorem14.9 (�-SOBOLEV INEQUALITIES FOR UNBALANCED BERNOULLI RANDOM
VARIABLES) Let f : {–1, 1}n → [0,∞) and let�(z) = z2/r . Then for all r ∈ [1, 2),

H�( f r) ≤ Cp,rE( f ),

where

Cp,r =
p1–2/r – (1 – p)1–2/r

(1 – p)p1–2/r – p(1 – p)1–2/r
.

The constant Cp,r is optimal.
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Proof Thanks to the sub-additivity of �-entropies and to the definition of E , it suffices to
prove the inequality for n = 1.

First observe that for any κ > 0 and f : {–1, 1} → [0,∞), if H�( f r) ≤ κE( f ),
thenH�((λf )r) ≤ κE(λf ) for all λ > 0. Thus, without loss of generality, we may re-
scale f so that (p1/rf (1) + (1 – p)1/rf (–1))/2 = 1. Then f is entirely determined by the
number y = ((1 – p)1/rf (–1) – p1/rf (1))/2 ∈ (–1, 1).

Now consider the function f0 : {–1, 1} → [0,∞) determined by

y0 =
(1 – p)1–1/r – p–1/r

(1 – p)1/r + p1/r
.

Then f0(1) = p–1/r(1 – y0) = (1 – p)–1/r(1 + y0) = f0(–1) and therefore f0 is constant,
implyingH�( f r0) = 0 = E( f0).

Both E( f ) and H( f r) may be written as functions of y. As E( f ) is a quadratic
polynomial of y, the first step is to boundH( f r) by a polynomial. Observe that

E
[
f (X)r

]2/r = ((1 – y)r + (1 + y)r)2/r .

Let ρ(z) =
(
(1 –

√
z)r + (1 +

√
z)r
)2/r for z ∈ [0, 1]. The function ρ is convex and

differentiable over (0, 1) (see Exercise 14.4). Hence ρ(y2) ≥ ρ(y20) + ρ′(y20)(y2 – y20)
for all y ∈ (–1, 1). Noting that

ρ ′(y20) = 2
(1 – p)1–1/r – p1–1/r

(1 – p)1/r – p1/r
,

we have

H( f r) = H( f r) – H( f r0)
≤ p1–2/r((1 – y)2 – (1 – y0)2) + (1 – p)1–2/r((1 + y)2 – (1 + y0)2)

–ρ′(y20)(y
2 – y20)

=
(
p1–2/r + (1 – p)1–2/r

)
(y2 – y20)

–2
(
p1–2/r – (1 – p)1–2/r

)
(y – y0)

–2
(1 – p)1–1/r – p–1/r

(1 – p)1/r – p1/r
(y2 – y20)

=
(
p1–2/r – (1 – p)1–2/r

) ((1 – p)1–1/r + p–1/r

(1 – p)1/r – p1/r
(y2 – y20) – 2(y – y0)

)
=
(
p1–2/r – (1 – p)1–2/r

) (y – y0)2
y0

.
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On the other hand,

( f (1) – f (–1))2 = ( f (1) – f0(1) – ( f (–1) – f0(–1)))
2

= (y – y0)2(p–1/r + (1 – p)–1/r)2.

We choose κ to equate the two quadratic functions above, that is,

(
p1–2/r – (1 – p)1–2/r

) (y – y0)2
y0

= κE( f ) = κp(1 – p)(y – y0)2(p–1/r + (1 – p)–1/r)2.

This yields κ = Cp,r .
The optimality of Cp,r can be verified by choosing f (–1) = p2/r and f (1) =

(1 – p)2/r . �

As in the case of balanced Bernoulli random variables, Theorem 14.9 may be used
to derive the optimal logarithmic Sobolev inequalities for unbalanced Bernoulli random
variables as announced in Theorem 5.2.

Corollary 14.10 (LOGARITHMIC SOBOLEV INEQUALITIES FOR UNBALANCED BER-
NOULLI RANDOM VARIABLES) For any function f : {–1, 1}n → R,

Ent( f 2) ≤ c(p)E( f )

with

c(p) =
1

1 – 2p
log

1 – p
p

.

Proof By the remark following the proof of Theorem 14.8, the proof reduces to noting that

lim
r→2–

Cp,r

2 – r
=
c(p)
2

. �

14.4 Bibliographical Remarks

Early results on�-entropies derive from (among others)Csiszár (1967, 1972)who defined
the related notion of φ-divergence, see Brègman (1967), Hu (2000), and Arnold et al.
(2001).

The �-Sobolev inequalities explored in this chapter, when used with �(x) = xa with
a ∈ (1, 2], may be thought of as interpolation between Poincaré (when �(x) = x2) and
logarithmic Sobolev (with �(x) = x log x) inequalities. Such interpolations go back to
Beckner (1989). The duality formula of Lemma 14.2 is due to Bobkov (see Ledoux 1997,
Latała and Oleszkiewicz 2000, Chafaï 2002, and Boucheron et al. 2005b).The treatment
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given in Section 14.2 follows Boucheron et al. (2005b). Chafaï (2002) developed a related
framework for�-entropies and�-Sobolev inequalities.

It is shown by Latała and Oleszkiewicz (2000) (see also Ledoux 1997) that there is
a tight connection between the convexity of H� and the sub-additivity property. Latała
and Oleszkiewicz (2000) show that � ∈ C implies the convexity of H�. The �-Sobolev
inequalities of Theorems 14.6 and 14.7 are from Boucheron et al. (2005b). Some methods
used to derive inequalities for �-entropies rely on auxiliary assumptions on concerning �

(see Chafaï (2006); see also Exercise 14.2).
Section 14.3 is based on Latała and Oleszkiewicz (2000). Theorem 14.8 is a spe-

cial case of Theorem 2 in Latała and Oleszkiewicz (2000), but see also Kwapień,
Latała, and Oleszkiewicz (1996). Theorem 14.9 comes from Remark 2 in Latała and
Oleszkiewicz (2000). Chafaï (2006) describes �-Sobolev inequalities for binomial and
Poisson distributions.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

14.5 E X ERC I S E S

14.1. Prove Theorem 14.7. (Boucheron et al. 2005b).
14.2. Some inequalities for�-entropies rely on assumptions on�. Prove that the follow-

ing statements are equivalent:
i) convexity of (u, v) �→ A�(u, v) = �(u + v) – �(u) – �′(u)v (the Brègman
divergence defined by�);
ii) convexity of (u, v) �→ B�(u, v) = (�′(u + v) – �′(u))v;
iii) convexity of (u, v) �→ C�(u, v) = �′′(u)v2;
iv) � is affine or �′′ > 0 and –1/�′′ is convex (the condition stated by Latała and
Oleszkiewicz (2000) and used in the statement of 14.1);
v)� is affine or�′′ > 0 and�′′′′�′′ ≥ 2�′′′2;
vi) (a, b) �→ t�(a) + (1 – t)�(b) – �(ta + (1 – t)b) is convex for any 0 ≤ t ≤ 1;
See Chafaï (2006) for a discussion.

14.3. (A FAMILY OF �-ENTROPIES) Let X be an X -valued random variable and f a
nonnegative measurable function onX . Prove that

θ(r) = 2r
E[ f 2(X)] – (E[ f (X)r])2/r

2 – r

is nondecreasing in r ∈ [1, 2) (Latała and Oleszkiewicz, 2000).
14.4. (CALCULUS) Let r ∈ [1, 2], and for z ∈ [0, 1], define ρ(z) = ((1 +

√
z)r +

(1 –
√
z)r)2/r . Prove that ρ is differentiable and convex over [0, 1].

14.5. (�-SOBOLEV INEQUALITIES FOR GAUSSIAN DISTRIBUTIONS) Let f : Rn → R

be a nonnegative differentiable function. Assume that X is a standard Gaussian
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vector. Then for all r ∈ [1, 2), letting�(z) = z2/r ,

H�( f r) ≤ (2 – r)E[‖∇f‖2].

Hint: start from Theorem 14.8 and proceed as in the proof of Theorem 5.5.
14.6. (�-SOBOLEV INEQUALITIES FOR POISSON DISTRIBUTION) Let�(x) = x2/r for

some r ∈ (1, 2). LetX be distributed according to a Poisson distribution. Prove that
for f : N → [0,∞),

H�( f (X)) ≤ (EX)E
[
D(� ◦ f )(X) – 2/rf (X)2/r–1Df (X)]

where Df (x) = f (x + 1) – f (x). See Chafaï (2003, 2006). See also Exercises 3.21
and 6.12.

14.7. (KHINCHINE’S INEQUALITIES FOR UNBALANCED BERNOULLI RANDOM VARI-
ABLES) Let p ∈ (0, 1/2) and assume that X1, . . . ,Xn are independent random
variables with P{Xi = –p} = 1 – p and P{Xi = 1 – p} = p. For r > 2, let

Cr,p =

{
(1/p)1/2–1/r if r ≤ log(1/p)√

1/p
log(1/p)

√
r if r ≥ log(1/p).

Prove that there exists a universal constant κ such that for all r > 2, for all
α1, . . . ,αn ∈ Rn, letting Z =

∑n
i=1 αiXi, we have

E
[
|Z|r

]1/r ≤ κCr,pE[Z2]1/2.

Hint: use Theorem 14.9. (Oleszkiewicz 2003.)



15

Moment Inequalities

This chapter is dedicated to upper bounds for higher centered moments of functions of
independent random variables. The bounds derived here may be regarded as generaliza-
tions of the Efron–Stein inequality.

As before, X = (X1, . . . ,Xn) denotes a vector of independent random variables taking
values in a set X and f : X n → R is a measurable function. We are interested in bounds
for the moments of the random variable Z = f (X).

Recall that in Section 6.9 we introduced the random variables V+ and V– as

V+ =
n∑
i=1

E′ [(Z – Z′
i)
2
+
]

and

V– =
n∑
i=1

E′ [(Z – Z′
i)
2
–
]
,

where X′
1, . . . ,X

′
n are independent copies of X1, . . . ,Xn, and the random variable

Z′
i is obtained by replacing the variable Xi by an independent copy X′

i , that is,
Z′
i = f (X1, . . . ,X′

i , . . . ,Xn). (Here E′[·] = E[·|X] denotes expectation with respect to the
variables X′

i only.)
Recall also that if fi : X n–1 → R are measurable functions, we define Zi =

fi(X(i)) = fi(X1, . . . ,Xi–1,Xi+1, . . . ,Xn) and

V =
n∑
i=1

(Z – Zi)2.

According to the Efron–Stein inequality, the variance of Zmay be bounded by EV+ = EV–,
and by EV . At the same time, by Theorem 6.16, the moment-generating function of Zmay
be bounded in terms of the moment-generating function of V+ and V–. In this chapter we
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show that, even when the moment-generating function of V+ (or Z) does not exist, we may
bound the moments of Z in terms of moments of V+,V–, or V).

Our approach is reminiscent of the entropy method that led us to the “exponential
Efron–Stein” inequalities of Theorem 6.16.However, instead of usingmodified logarithmic
Sobolev inequalities to obtain differential inequalities for the moment-generating function
of Z, here we use the �-Sobolev inequalities of Section 14.2 to obtain recursive inequal-
ities for the moments of Z. Solving these recursions leads us to the main results of this
chapter.

In Section 15.1 we start by deriving inequalities that relate higher moments of Z to the
sum of a lower moment and another term that involves V (or V+). These bounds are then
used, by inductive arguments, in Sections 15.2 and 15.3, to establish the main results of this
chapter. The use of results are then illustrated in Sections 15.4, 15.5, and 15.6 by describing
moment inequalities for sums of independent random variables, empirical processes, and
conditional Rademacher averages.

15.1 Generalized Efron–Stein Inequalities

We start with simple corollaries of theφ-Sobolev inequalities of Theorems 14.6 and 14.7. In
a sense, these boundsmay be regarded as generalized versions of the Efron–Stein inequality
as they bound moments of Z by moments of lower order and functions of V+,V–, and V .

Lemma 15.1 Let q > 2 and let α satisfy q/2 ≤ α ≤ q – 1. Then

E
[
(Z – EZ)q+

] ≤ E
[
(Z – EZ)α+

]q/α +
q(q – α)

2
E
[
V(Z – EZ)q–2+

]
,

E
[
(Z – EZ)q+

] ≤ E
[
(Z – EZ)α+

]q/α + α (q – α)E
[
V+(Z – EZ)q–2+

]
,

and

E
[
(Z – EZ)q–

] ≤ E
[
(Z – EZ)α–

]q/α + α (q – α)E
[
V–(Z – EZ)q–2–

]
.

Proof Let q andα be such that 1 ≤ q/2 ≤ α ≤ q – 1. Letφ(x) = xq/α . Applying Theorem
14.6 with η(z) = (z – EZ)α+ leads to the first two inequalities. Finally, wemay apply the
third inequality of Theorem 14.7 with η(z) = (z – EZ)α– to obtain the third inequality
of the lemma. �

The next lemma is a variant of Lemma 15.1 that works for nonnegative random variables.

Lemma 15.2 Let q ≥ 2 and q/2 ≤ α ≤ q – 1. If for all i = 1, . . . , n

0 ≤ Zi ≤ Z almost surely,
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then

E [Zq] ≤ E [Zα]q/α +
q(q – α)

2
E
[
VZq–2] .

Proof The lemma follows by taking φ(x) = xq/α and applying Theorem 14.6 with
f (z) = zα . �

The third lemma bounds “left” moments in terms ofV andV+ and requires an additional
“bounded differences” condition.

Lemma 15.3 If the increments Z – Zi are bounded by a random variable M ≥ 0 for all
i = 1, . . . , n, then

E
[
(Z – EZ)q–

] ≤ E
[
(Z – EZ)α–

]q/α +
q (q – α)

2
E
[
V (Z – EZ –M)q–2–

]
If Z – Z′

i ≤ M for i = 1, . . . , n for a random variable M ≥ 0, then

E
[
(Z – EZ)q–

] ≤ E
[
(Z – EZ)α–

]q/α + α (q – α)E
[
V+ (Z – EZ –M)q–2–

]
Proof The proof follows from Theorem 14.7. �

The inequalities of the lemmas above may now be used by induction to obtain the
moment inequalities that are the principal results of this chapter.

15.2 Moments of Functions of Independent
RandomVariables

We present the main moment inequalities in this section. For a random variable Y and
q > 0, introduce the notation

‖Y‖q =
(
E|Y |q

)1/q .
In Section 3.6, we used Efron–Stein inequality, the simplest �-Sobolev inequality in order
to show that if the Efron–Stein estimate V+ of the variance of a function of many inde-
pendent random variables Z = f (X1, . . . ,Xn) is upper bounded by a constant c, then Z has
sub-exponential tails. As a warm-up illustration of how our inductive arguments work, we
re-prove this simple result, starting, once again, from the Efron–Stein inequality.

Recall fromTheorem2.1 the fact that the q-thmoment is bounded by a constantmultiple
of q for all q ≥ 1 is equivalent to sub-exponential tails.

We verify, by induction, that for all integers k ≥ 1 and for all q ∈ [k, k + 1),∥∥(Z – EZ)+
∥∥
q ≤

√
cq.
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For q ∈ [1, 2], by Hölder’s inequality,
∥∥(Z – EZ)+

∥∥
q ≤

∥∥(Z – EZ)+
∥∥
2 while∥∥(Z – EZ)+

∥∥
2 ≤

√
c by the Efron–Stein’s inequality. For q = 3, from the second

inequality of Lemma 15.1 with α = q/2, we obtain

∥∥(Z – EZ)+
∥∥q
q ≤

∥∥(Z – EZ)+
∥∥q
q/2 +

cq2

4

∥∥(Z – EZ)+
∥∥q–2
q–2

≤ 9c3/2

4
≤ (3/2)2

√
c3.

By Hölder’s inequality, for all q ∈ [2, 3],
∥∥(Z – EZ)+

∥∥
q ≤

∥∥(Z – EZ)+
∥∥
3 ≤ q

√
c.

Assume now that the moment bound holds for all integers smaller than some k ≥ 3.
Then for q ∈ [k + 1, k + 2), from the second inequality of Lemma 15.1 with α = q/2, and
the induction hypothesis, we obtain

∥∥(Z – EZ)+
∥∥q
q ≤

∥∥(Z – EZ)+
∥∥q
q/2 +

cq2

4

∥∥(Z – EZ)+
∥∥q–2
q–2

≤ (
q/2

√
c
)q + cq2

4
(
(q – 2)

√
c
)q–2

≤ qq
√
cq
((

1
2

)q

+
(
1 –

2
q

)q–2
)

≤ qq
√
cq.

Even though this is our third and simplest proof of a sub-optimal result, it illustrates the
pattern of several proofs in this section. However, in order to obtain improved, sometimes
tight, bounds, we choose values of α close to q in Lemma 15.1, rather than α = q/2.

Before stating the most general results, we start with the following simple sub-Gaussian
bound.

Theorem 15.4 If V+ ≤ c for some constant c ≥ 0, then for all integers q ≥ 2,∥∥(Z – EZ)+
∥∥
q ≤

√
Kqc,

where K = 1/
(
e –

√
e
)

< 0.935. If furthermore V– ≤ c then for all integers q ≥ 2,

‖Z‖q ≤ EZ + 21/q
√
Kqc.

Recall from Theorem 2.1 that the fact that the q-th moment is bounded by a constant
multiple of √q for all q is equivalent to sub-Gaussian tails and therefore Theorem 15.4 is
essentially equivalent to Theorem 6.7. However, the proof is quite different and it illustrates
the essence of the techniques of the more general results below in a transparent way.



434 | MOMENT IN EQUA L I T I E S

Proof Define

mq =
∥∥(Z – EZ)+

∥∥
q .

From the second inequality of Lemma 15.1 with α = q – 1, we obtain, for q ≥ 3,

mq
q ≤ mq

q–1 + c (q – 1)mq–2
q–2. (15.1)

We use this inequality to show by induction that, for all q ≥ 2,

mq
q ≤ (Kqc)q/2 .

For q = 2 this holds since by the Efron–Stein inequality, m2
2 ≤ EV+ ≤ c. The case

q = 3 follows from (15.1), since usingm1 ≤ m2 ≤ √
c, we have

m3
3 ≤ 3c3/2.

Consider now q ≥ 4 and assume that

mj ≤
√
Kjc

for every j ≤ q – 1. Then, it follows from (15.1) and two applications of the induction
hypothesis that

mq
q ≤ Kq/2cq/2

√
q – 1

(√
q – 1

)q–1
+
Kq/2

K
cq/2 (q – 1)

(√
q – 2

)q–2
=
(
Kqc

)q/2 ((q – 1
q

)q/2

+
q – 1
Kq

(
q – 2
q

)(q–2)/2
)

=
(
Kqc

)q/2 (q – 1
q

)q/2
(
1 +

1
K

(
q – 2
q – 1

)(q–2)/2
)
.

The first part of the theorem then follows from the fact that the factor multiplying
(Kqc)q/2 on the right-hand side is bounded by 1 for all q ≥ 4 (Exercise 15.1).

To prove the second part, observe that if, in addition, V– ≤ c, then we may apply
the first inequality to –Z to obtain∥∥(Z – EZ)–

∥∥
q ≤ K

√
qc.

The statement follows since

E|Z – EZ|q = E(Z – EZ)q+ + E(Z – EZ)q– ≤ 2
(
K
√
qc
)q . �
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Now we are ready for the main results of this chapter. The next theorem shows that the
q-th moment of Z may be bounded in terms of the q/2-th moment of V+, V–, and V , thus
generalizing the Efron–Stein inequality which only treats the case q = 2.

Let κ1 = 1 and for any integer q ≥ 2, define

κq =
1
2

(
1 –

(
1 –

1
q

)q/2
)–1

.

Then κq ↗ κ as q → ∞, where

κ =
√
e

2
(√

e – 1
) < 1.271.

Theorem 15.5 For any real q ≥ 2

∥∥(Z – EZ)+
∥∥
q ≤

√(
1 –

1
q

)
2κqq ‖V+‖q/2

≤
√
2κq ‖V+‖q/2 =

√
2κq

∥∥∥√V+
∥∥∥
q
,

and

∥∥(Z – EZ)–
∥∥
q ≤

√(
1 –

1
q

)
2κqq ‖V–‖q/2

≤
√
2κq ‖V–‖q/2 =

√
2κq

∥∥∥√V–
∥∥∥
q
.

Proof It suffices to prove the first inequality, as the second follows from the first by
replacing Z by –Z.

We prove by induction on k that for all integers k ≥ 1, and all q ∈ (k, k + 1],∥∥(Z – EZ)+
∥∥
q ≤

√qκqcq,

where cq = 2 ‖V+‖q/2∨1 (1 – 1/q).
For k = 1 it follows fromHölder’s inequality and the Efron–Stein inequality that

∥∥(Z – EZ)+
∥∥
q ≤

√
2 ‖V+‖1 ≤

√
2κq ‖V+‖1∨q/2.

Assume now that the property holds for all integers smaller than some k > 1, and
consider q ∈ (k, k + 1]. By Hölder’s inequality,

E
[
V+(Z – EZ)q–2+

]
≤ ∥∥V+

∥∥
q/2

∥∥(Z – EZ)+
∥∥q–2
q ,
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so using Lemma 15.1 with α = q – 1, we get∥∥(Z – EZ)+
∥∥q
q ≤

∥∥(Z – EZ)+
∥∥q
q–1 +

q
2
cq
∥∥(Z – EZ)+

∥∥q–2
q .

Defining

xq =
∥∥(Z – EZ)+

∥∥q
q

(
qκqcq

)–q/2 ,
it suffices to prove that xq ≤ 1. With this notation, the previous inequality becomes

xqqq/2cq/2q κq/2
q ≤ xq/(q–1)q–1 (q – 1)q/2 cq/2q–1κ

q/2
q–1 +

1
2
x1–2/qq qq/2cq/2q κq/2–1

q ,

from which, using cq–1 ≤ cq and κq–1 ≤ κq, we have

xq ≤ xq/q–1q–1

(
1 –

1
q

)q/2

+
1
2κq

x1–2/qq .

Assuming, by induction, that xq–1 ≤ 1, this implies that

xq ≤
(
1 –

1
q

)q/2

+
1
2κq

x1–2/qq .

Since the function

fq(x) =
(
1 –

1
q

)q/2

+
1
2κq

x1–2/q – x

is strictly concave on [0,∞) and positive at x = 0, fq(1) = 0 and fq(xq) ≥ 0 imply that
xq ≤ 1 as desired. �

15.3 Some Variants and Corollaries

Next we present some variants of Theorem 15.5. The first result may be proved by an
argument essentially identical to the proof of Theorem 15.5. The details are left to the
reader.

Theorem 15.6 Assume that Zi ≤ Z for all 1 ≤ i ≤ n. Then for any real q ≥ 2,∥∥(Z – EZ)+
∥∥
q ≤

√
κqq ‖V‖q/2 ≤

√
κq ‖V‖q/2.

Even though Theorem 15.5 provides some information concerning the growth of
moments of (Z – E[Z])–, this information may be difficult to extract in concrete cases. The
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following result relates the moments of (Z – E[Z])– with ‖V+‖q rather than with ‖V–‖q .
This requires certain boundedness assumptions on the increments of Z.

Theorem 15.7 Suppose that for every i = 1, . . . , n,

(Z – Z′
i)+ ≤ M

for a random variable M. Then for every real number q ≥ 2,

∥∥(Z – EZ)–
∥∥
q ≤

√
Cq

(
‖V+‖q/2 ∨ q ‖M‖2q

)
,

where C < 4.16.

Proof We use the notationmq =
∥∥(Z – EZ)–

∥∥
q. Note that the continuous function

e–1/2 +
1
x
e1/

√
x – 1

decreases from ∞ to e–1/2 – 1 < 0 on (0,∞). Define C as the unique zero of this
function.

Since C > 1/2, it follows from Hölder’s inequality and the Efron–Stein inequality
that for q ∈ [1, 2],

∥∥(Z – EZ)–
∥∥
q ≤

√
2 ‖V+‖1 ≤

√
2κq ‖V+‖1∨q/2.

Define

cq =
∥∥V+∥∥

1∨q/2 ∨ q ‖M‖2q .

For q ≥ 2, Lemma 15.3 (with α = q – 1) implies

mq
q ≤ mq

q–1 + qE
[
V+ ((Z – EZ)– +M)q–2

]
. (15.2)

We first deal with the case q ∈ [2, 3). By the subadditivity of xq–2 for q ∈ [2, 3], we
have

((Z – EZ)– +M)q–2 ≤ Mq–2 + (Z – E [Z])q–2– .

Using Hölder’s inequality we obtain from (15.2) that

mq
q ≤ mq

q–1 + q ‖M‖q–2q

∥∥V+∥∥
q/2 + q

∥∥V+∥∥
q/2m

q–2
q .

Using the fact thatmq–1 ≤ √cq–1 ≤ √cq, this implies

mq
q ≤ cq/2q + q2–q/2cq/2q + qcqmq–2

q .
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Let xq =
(

mq√
Cqcq

)q

. Then the preceding inequality becomes

xq ≤
(

1
Ccq

)q/2

+
1
C

((√
Cq
)–q+2

+ x1–2/qq

)
which in turn implies

xq ≤ 1
2C

+
1
C

(
1 + x1–2/qq

)
since q ≥ 2 and C ≥ 1. The function

gq(x) =
1
2C

+
1
C
(
1 + x1–2/q

)
– x

is strictly concave on [0,∞) and positive at 0. Furthermore, gq(1) = 5/(2c) – 1 < 0,
since C > 5/2. Hence gq(xq) ≥ 0 only if xq ≤ 1, which settles the case q ∈ [2, 3].

We now turn to the case q ≥ 3. We prove by induction on k ≥ 2, that for all
q ∈ [k, k + 1),mq ≤ √

qCκqcq. By the convexity of xq–2 we have, for every θ ∈ (0, 1),

((Z – EZ)– +M)q–2 =
(

θ
(Z – EZ)–

θ
+ (1 – θ)

M
1 – θ

)q–2

≤ θ –q+3Mq–2 + (1 – θ)–q+3 (Z – E [Z])q–2– .

Using Hölder’s inequality we obtain from (15.2) that

mq
q ≤ mq

q–1 + qθ–q+3 ‖M‖q–2q

∥∥V+∥∥
q/2 + q (1 – θ)–q+3

∥∥V+∥∥
q/2 m

q–2
q .

Now assume by induction thatmq–1 ≤
√
C (q – 1) cq–1. Since cq–1 ≤ cq, we have

mq
q ≤ Cq/2 (q – 1)q/2 cq/2q + q–q+2θ–q+3qq/2cq/2q + q (1 – θ)–q+3 cqmq–2

q .

Let xq = C–q/2mq
q
(
qcq
)–q/2. Then it suffices to show that xq ≤ 1 for all q > 2.

Observe that

xq ≤
(
1 –

1
q

)q/2

+
1
C

(
θ–q+3

(√
Cq
)–q+2

+ (1 – θ)–q+3 x1–2/qq

)
.

We choose θ minimizing

g(θ) = θ–q+3
(√

Cq
)–q+2

+ (1 – θ)–q+3,
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that is, θ = 1/
(√

Cq + 1
)
. Since for this value of θ ,

g(θ) =
(
1 +

1√
Cq

)q–2

,

the bound on xq becomes

xq ≤
(
1 –

1
q

)q/2

+
1
C

(
1 +

1√
Cq

)q–2
(
1 +

( √
Cq

1 +
√
Cq

)(
x1–2/qq – 1

))
.

Hence, using the elementary inequalities

(
1 –

1
q

)q/2

≤ e–1/2 and
(
1 +

1√
Cq

)q–2

≤ e1/
√
C,

we get

xq ≤ e–1/2 +
e1/

√
C

C

( √
Cq

1 +
√
Cq

)(
x1–2/qq – 1

)
.

Since the function

fq(x) = e–1/2 +
e1/

√
C

C

(
1 +

( √
Cq

1 +
√
Cq

) (
x1–2/q – 1

))
– x

is strictly concave on [0,∞) and positive at 0 and C is defined in such a way that
fq(1) = 0, fq can be nonnegative at xq only if xq ≤ 1 which proves the theorem by
induction. �

The next corollary allows us to deal with “generalized” self-bounding functions.

Corollary 15.8 Assume that Zi ≤ Z for all i = 1, . . . , n and V ≤ WZ for a random variable
W ≥ 0. Then for all real numbers q ≥ 2,

‖Z‖q ≤ 2EZ + κq ‖W‖q .

Also,

∥∥(Z – EZ)+
∥∥
q ≤

√
2κq ‖W‖q EZ + κq ‖W‖q .
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Proof Let q ≥ 2. Then

∥∥(Z – EZ)+
∥∥
q

≤
√

κq ‖WZ‖q/2 (by Theorem 15.6)

≤
√

κq ‖Z‖q ‖W‖q (by Hölder’s inequality)

≤ 1
2
‖Z‖q + κq

2
‖W‖q since

√
ab ≤ (a + b)/2 for a, b ≥ 0.

Now Z ≥ 0 implies that
∥∥(Z – EZ)–

∥∥
q ≤ EZ and we have ‖Z‖q ≤ EZ +∥∥(Z – EZ)+

∥∥
q. Hence,

‖Z‖q ≤ 2EZ + κq ‖W‖q ,

concluding the proof of the first statement. To prove the second inequality, note that

∥∥(Z – EZ)+
∥∥
q

≤
√

κq ‖WZ‖q/2 (by Theorem 15.6)

≤
√

κq ‖W‖q ‖Z‖q (by Hölder’s inequality)

≤
√

κq ‖W‖q
(
2EZ + κq ‖W‖q

)
(by the first inequality)

≤
√
2κq ‖W‖q EZ + κq ‖W‖q

as desired. �

15.4 Sums of RandomVariables

In this section we apply the results stated in Sections 15.2 and 15.3 for sums of independ-
ent random variables. As a result, we recover versions of some classical moment inequalities
such as the Khinchine–Kahane, Marcinkiewicz, and Rosenthal inequalities. We emphas-
ize that rather than offering an exhaustive account of moment inequalities for sums of
independent random variables, we illustrate how the machinery developed in the previous
sections may be used to obtain such inequalities. In all cases, the proof does not require
much further work. Also, we obtain explicit constants which only depend on q. These
constants are not optimal, though in some cases their dependence on q is of the right order.
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The simplest example is the case of the Khinchine’s inequality which states that for all
q ≥ 2, there exists a Bq such that for all a1, . . . , an > 0,√√√√ n∑

i=1

a2i ≤
(
E

∣∣∣∣∣
n∑
i=1

aiXi

∣∣∣∣∣
q)1/q

≤ Bq

√√√√ n∑
i=1

a2i ,

where X1, . . . ,Xn are independent Rademacher variables. The inequality on the left-hand
side is a simple application of Jensen’s inequality, while the upper bound follows from
Theorem 15.4 as follows.

Theorem 15.9 (KHINCHINE’S INEQUALITY) Let a1, . . . , an > 0 be constants and let
X1, . . . ,Xn be independent Rademacher variables (i.e. with P{Xi = –1} = P{Xi = 1} =
1/2). If Z =

∑n
i=1 aiXi then for any integer q ≥ 2,

∥∥(Z)+∥∥q = ∥∥(Z)–∥∥q ≤ √
2Kq

√√√√ n∑
i=1

a2i

and

‖Z‖q ≤ 21/q
√
2Kq

√√√√ n∑
i=1

a2i

where K = 1/
(
e –

√
e
)

< 0.935.

Proof Wemay use Theorem 15.4. Since

V+ =
n∑
i=1

E
[
(ai(Xi – X′

i ))
2
+ | Xi

]
= 2

n∑
i=1

a2i 1aiXi>0 ≤ 2
n∑
i=1

a2i ,

the result follows. �

Note also that using a symmetrization argument (see Exercise 15.5), Khinchine’s
inequality above implies Marcinkiewicz’ inequality: if X1, . . . ,Xn are independent centered
random variables then for any q ≥ 2,∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
q

≤ 21+1/q
√
2Kq

√√√√∥∥∥∥∥
n∑
i=1

X2
i

∥∥∥∥∥
q/2

.

Another classical moment inequality for sums of independent random variables is
Rosenthal’s inequality that bounds the q-thmoment of the sum in terms of the q-thmoment
of the individual variables. The case of nonnegative and centered summands are usually
dealt with separately. Next we prove two such results that we obtain from our general
moment inequalities.
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Theorem 15.10 Define

Z =
n∑
i=1

Xi,

where X1, . . . ,Xn are independent and nonnegative random variables. Then for all integers
q ≥ 1,

∥∥(Z – EZ)+
∥∥
q ≤

√
2κq

∥∥∥∥ max
i=1,...,n

Xi

∥∥∥∥
q
EZ + κq

∥∥∥∥ max
i=1,...,n

Xi

∥∥∥∥
q
,

∥∥(Z – EZ)–
∥∥
q ≤

√√√√Kq
n∑
i=1

EX2
i .

Also,

‖Z‖q ≤ 2EZ + κq
∥∥∥∥ max
i=1,...,n

Xi

∥∥∥∥
q
.

Proof To prove the first and the third inequalities, we may use Corollary 15.8. Simply
note that

V =
n∑
i=1

X2
i ≤ WZ,

where

W = max
i=1,...,n

Xi.

In order to obtain the second inequality, just observe that

V– ≤
n∑
i=1

E
[
X′
i
2
]
,

and apply Theorem 15.4 to –Z. �

Note that Rosenthal’s inequality – and its variants – typically bound the moments of∑n
i=1 Xi in terms of

∑n
i=1 E|Xi|q and not in terms of ‖maxi=1,...,n Xi‖q as in the theorem

above. However, by bounding E| maxi=1,...,n Xi|q ≤∑n
i=1 E|Xi|q we recover inequalities of

the usual form.
Wemay use the previous result to derive aRosenthal-type inequality for sums of centered

variables.

Theorem 15.11 Let X1, . . . ,Xn be independent real-valued random variables with EXi = 0.
Define

Z =
n∑
i=1

Xi, σ 2 =
n∑
i=1

EX2
i , Y = max

i=1,...,n
|Xi|.
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Then for any integer q ≥ 2,

‖Z+‖q ≤ σ
√
6κq + qκ

√
2 ‖Y‖q .

Proof WeuseTheorem 15.5. Note thatV+ (defined at the beginning of the chapter) equals

V+ =
n∑
i=1

X2
i +

n∑
i=1

EX2
i .

Thus, ∥∥(Z)+∥∥q ≤ √
2κq ‖V+‖q/2 (by Theorem 15.5),

≤ √
2κq

√√√√(
n∑
i=1

EX2
i

)
+

∥∥∥∥∥
n∑
i=1

X2
i

∥∥∥∥∥
q/2

≤ √
2κq

√√√√ n∑
i=1

EX2
i + 2

n∑
i=1

EX2
i + 2κq ‖Y2‖q/2

(by Theorem 15.10)

=
√
2κq

√√√√3
n∑
i=1

EX2
i + κq ‖Y2‖q/2

≤ σ
√
6κq + qκ

√
2 ‖Y‖q . �

15.5 Suprema of Empirical Processes

Next we apply our general moment inequalities to derive bounds for the moments of
suprema of empirical processes. The arguments are no more difficult than those of the pre-
vious section for sums of independent random variables. As a first illustration, we point out
that the proof of Khinchine’s inequality in the previous section extends, in a straightfor-
ward way, to an analogous supremum. The basic notation and conventions for empirical
processes are introduced in Chapter 11.

Theorem 15.12 Let T ⊂ Rn be a (countable) set of vectors t = (t1, . . . , tn) and let
X1, . . . ,Xn be independent Rademacher variables. If Z = supt∈T

∑n
i=1 tiXi then for any

integer q ≥ 2,

∥∥(Z – EZ)+
∥∥
q ≤

√
2Kq sup

t∈T

√√√√ n∑
i=1

t2i
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where K = 1/
(
e –

√
e
)
, and

∥∥(Z – EZ)–
∥∥
q ≤

√
2Cq sup

t∈T

√√√√ n∑
i=1

t2i ∨ 2
√
Cq sup

i,t
|ti|.

where C is defined as in Theorem 15.7.

Before stating the main result of the section, we mention the following consequence of
Corollary 15.8.

Theorem 15.13 Let X1, . . . ,Xn denote a collection of independent random vectors with
nonnegative coordinates indexed by the countable set T . Let Z = sups∈T

∑n
i=1 Xi,s and let

M = max
i=1,...,n

sup
s∈T

Xi,s.

Then, for all q ≥ 2,

‖Z‖q ≤ 2EZ + κq ‖M‖q .
Next we turn to the case of centered processes. Let T denote a countable index set. Let

X1, . . . ,Xn denote independent random vectors indexed by T such that for all s ∈ T and
i = 1, . . . , n, EXi,s = 0. Let

Z = sup
s∈T

∣∣∣∣ n∑
i=1

Xi,s

∣∣∣∣.
Recall from Chapter 11 the definition of the weak variance�2 and the wimpy variance σ 2:

�2 = E sup
s∈T

n∑
i=1

X2
i,s, σ 2 = sup

s∈T
E

n∑
i=1

X2
i,s.

A third quantity appearing in the moment and tail bounds is

M = max
i=1,...,n

Yi

whereYi = sups∈T |Xi,s|. The randomvariableYi is often called the envelope of the collection
of coordinates.

Before stating the main theorem, we recall the connection between the wimpy and the
weak variances established by Lemma 11.17:

�2 ≤ σ 2 + 32
√
EM2EZ + 8EM2.

The next theorem offers two upper bounds for the moments of suprema of centered
empirical processes.
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Theorem 15.14 Let X1, . . . ,Xn denote independent random vectors indexed by T such that
for all s ∈ T and i = 1, . . . , n, EXi,s = 0. Let

Z = sup
s∈T

∣∣∣∣ n∑
i=1

Xi,s

∣∣∣∣.
Then for all q ≥ 2,∥∥(Z – EZ)+

∥∥
q ≤

√
2κq (� + σ ) + 2κq

(
‖M‖q + sup

s∈T
i=1,...,n

∥∥Xi,s
∥∥
2

)
,

and furthermore

‖Z‖q ≤ 2EZ + 2σ
√
2κq + 20κq ‖M‖q + 4

√
κq ‖M‖2 .

Proof The proof is based on the Theorem 15.5 which states that∥∥(Z – EZ)+
∥∥
q ≤

√
2κq ‖V+‖q/2.

We may bound V+ as follows.

V+ ≤ sup
s∈T

n∑
i=1

E
[
(Xi,s – X′

i,s)
2 | Xn

1
]

≤ sup
s∈T

n∑
i=1

(
EX2

i,s + X2
i,s
)

≤ sup
s∈T

n∑
i=1

EX2
i,s + sup

s∈T

n∑
i=1

X2
i,s.

Thus, by Minkowski’s inequality and the Cauchy–Schwarz inequality,√
‖V+‖q/2

≤
√√√√sup

s∈T

n∑
i=1

EX2
i, s +

∥∥∥∥∥sups∈T

n∑
i=1

X2
i, s

∥∥∥∥∥
q/2

≤ σ +

∥∥∥∥∥∥sups∈T

√√√√ n∑
i=1

X2
i, s

∥∥∥∥∥∥
q

= σ +

∥∥∥∥∥sups∈T
sup

α:‖α‖2≤1

n∑
i=1

αiXi, s

∥∥∥∥∥
q

≤ σ + � +

∥∥∥∥∥
(

sup
s∈T ,α:‖α‖2≤1

n∑
i=1

αiXi, s – E sup
s∈T ,α:‖α‖2≤1

n∑
i=1

αiXi, s

)
+

∥∥∥∥∥
q

.



446 | MOMENT IN EQUA L I T I E S

The last termmay be upper bounded again by Theorem 15.5. Indeed, the correspond-
ing V+ is not more than

max
i=1,...,n

sup
s∈T

X2
i, s + max

i=1,...,n
sup
s∈T

E[X2
i, s],

and thus∥∥∥∥∥
(

sup
s∈T ,α:‖α‖2≤1

n∑
i=1

αiXi, s – E sup
s∈T ,α:‖α‖2≤1

n∑
i=1

αiXi, s

)
+

∥∥∥∥∥
q

≤ √
2κq

(
‖M‖q + max

i=1,...,n
sup
s∈T

∥∥Xi, s
∥∥
2

)
.

This completes the proof of the first inequality of the theorem. The second
inequality follows because by nonnegativity of Z,

∥∥(Z – EZ)–
∥∥
q ≤ EZ and therefore

‖Z‖q ≤ EZ +
∥∥(Z – EZ)+

∥∥
q and because by the first inequality, combined with

Lemma 11.17, we have∥∥(Z – EZ)+
∥∥
q ≤

√
2κq

(
σ +

√
32
√
EM2EZ +

√
8EM2 + σ

)
+2κq

(
‖M‖q + sup

i,s∈T

∥∥Xi,s
∥∥
2

)
≤ EZ + 2σ

√
2κq + 16κ

√
EM2 +

√
16κqEM2

+2κq
(
‖M‖q + sup

i,s∈T

∥∥Xi,s
∥∥
2

)
(using the inequality

√
ab ≤ a + b/4).

Using ‖M‖2 ≤ ‖M‖q and sups∈T ,i=1,...,n

∥∥Xi,s
∥∥
2 ≤ ‖M‖2, we obtain the desired

result. �

15.6 Conditional Rademacher Averages

As another easy application of the general moment bounds, we now study conditional
Rademacher averages. We have already met these functions in Section 3.3 but there we
assumed that the class F only contains bounded functions. When this is not the case, the
result belowmay be useful.

Let F be a countable class of measurable real-valued functions. The conditional
Rademacher average is defined by

Z = E

[
sup
f∈F

∣∣∣∣∣
n∑
i=1

εif (Xi)

∣∣∣∣∣ | Xn
1

]
where the εi are independent Rademacher random variables.
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Theorem 15.15 Let Z denote a conditional Rademacher average and let M = supi,f f (Xi).
Then ∥∥(Z – EZ)+

∥∥
q ≤

√
2κq ‖M‖q EZ + κq ‖M‖q ,

and ∥∥(Z – EZ)–
∥∥
q ≤

√
2C2

(√
q ‖M‖q EZ + 2q ‖M‖q

)
where C2 is the constant of Exercise 15.3.

Proof Define

Zi = E

⎡⎣sup
f∈F

∣∣∣∣∣∣
∑
j�=i

εjf (Xj)

∣∣∣∣∣∣ | Xn
1

⎤⎦.
Recall from Section 3.3 the self-bounding property of conditional Rademacher aver-
ages. In particular, even without the boundedness assumption, we still have that for
all i, Z – Zi ≥ 0 and

n∑
i=1

(Z – Zi) ≤ Z.

Thus, we have

V ≤ ZM, and Z – Zi ≤ M.

The result now follows by Corollary 15.8, noting thatM = W . �

15.7 Bibliographical Remarks

The material of this chapter is mostly based on Boucheron et al. (2005b).
Recall Burkholder’s inequalities from martingale theory. Burkholder’s inequalities may

be regarded as extensions of Marcinkiewicz’s inequalities to sums of martingale incre-
ments. They are natural candidates for deriving moment inequalities for a function
Z = f (X1, . . . ,Xn) of many independent random variables. The approach mimics the
method of bounded differences (see Section 6.1) classically used to derive Bernstein- or
Hoeffding-like inequalities under similar circumstances. The method works as follows: let
Fi denote the σ -algebra generated by the sequence (Xi

1). Then the sequenceMi = E[Z|Fi]
is an Fi-adapted martingale (the Doob martingale associated with Z). Let 〈Z〉 denote the
associated quadratic variation

〈Z〉 =
n∑
i=1

(Mi –Mi–1)2,
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let [Z] denote the predictable quadratic variation

[Z] =
n∑
i=1

E
[
(Mi –Mi–1)2 | Fi–1

]
,

and let D be defined as D = maxi=1,...,n |Mi –Mi–1|. Burkholder’s inequalities imply that for
q ≥ 2,

‖Z – EZ‖q ≤ (q – 1)
√
‖〈Z〉‖q/2 = (q – 1)

∥∥∥√〈Z〉
∥∥∥
q
.

Note that the dependence on q in this inequality differs from the dependence in Theorem
15.5. The Burkholder–Rosenthal–Pinelis inequality (Pinelis, 1994, Theorem 4.1) implies
that there exists a universal constant C such that

‖Z – EZ‖q ≤ C
(√

q
∥∥[Z]∥∥q/2 + q ‖D‖q

)
.

With some extra information on the sensitivity of Z with respect to its arguments, such
inequalities may be used to develop a strict analog of themethod of bounded differences for
moment inequalities. In principle such an approach should provide tight results, but finding
good bounds on themoments of the quadratic variation process often proves quite difficult.

The inequalities introduced in this chapter have a form similar to those obtained by
Doob’s martingale representation and Burkholder’s inequality. But, instead of relying on
the quadratic variation process, they rely on a more tractable quantity. Indeed, in many
cases V+ and V– are easier to deal with than [Z] or 〈Z〉.

For more information on moment inequalities for sums of independent random vari-
ables, we refer to the de la Peña and Giné (1999).

For some historical notes on Khinchine’s inequality, see the bibliographical remarks of
Chapter 5. For Marcinkiewicz’ inequalities see, for example, de la Peña and Giné (1999,
page 34).

There are numerous versions of Rosenthal’s inequality, the first dating back to Rosenthal
(1970).

Burkolder’s inequalities are described and surveyed in Burkholder (1988, 1989), but
see also Chow and Teicher (1978, page 384). It is known that for general martingales,
Burkholder’s inequality is essentially unimprovable (see Burkholder 1989, Theorem 3.3).
However, for the special case of Doob martingale associated with Z this bound is perhaps
improvable.

Theorem 15.14, may be regarded as an analog of Talagrand’s inequality (Talagrand,
1996b) for moments. Indeed, Talagrand’s exponential inequality may be easily deduced
from Theorem 15.14 by bounding the moment-generating function by moments.

Theorem 15.10 is similar to inequality (Hr) in Giné, Latała, and Zinn (2000), which
follows from an improved Hoffmann–Jørgensen inequality by Kwapień and Woyczyńsky
(1992).

The first inequality in Theorem 15.14 improves inequality (3) of Pinelis (1995). The
second inequality is a version of Proposition 3.1 of Giné, Latała and Zinn (2000).

Pinelis (1995) extends Theorem 15.11 for martingales.
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The paper by Boucheron et al. (2005b) contains applications to Rademacher chaos and
Boolean polynomials. Clémençon, Lugosi, and Vayatis (2008) apply these inequalities to
obtain moment inequalities forU-statistics.

Conditional Rademacher averages appeared at the core of the early concentration
inequalities used in the theory of probability in Banach spaces (see Ledoux and Talagrand
(1991)).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

15.8 E X ERC I S E S

15.1. Prove that for all integers q ≥ 4,

xq =
(
q – 1
q

)q/2
(
1 +

1
K

(
q – 2
q – 1

)(q–2)/2
)
≤ 1.

Also, limq→∞ xq = 1.
15.2. Mimic the argument of Theorem 15.5 to prove Theorem 15.6.
15.3. Prove the following variant of Theorem 15.7. Suppose that for every

i = 1 . . . , n, 0 ≤ Z – Zi ≤ M. Then

∥∥(Z – EZ)–
∥∥
q ≤

√
C2q

(
‖V‖q/2 ∨ q ‖M‖2q

)
,

where C2 < 2.42.
15.4. Combine the previous exercise with the proof of Corollary 15.8 to show the fol-

lowing. Assume that Zi ≤ Z for all i = 1, . . . , n and V ≤ WZ for a random variable
W ≥ 0. Suppose also that for every 1 ≤ i ≤ n,

0 ≤ Z – Zi ≤ M

for some random variableM. Then for all q ≥ 2,

∥∥(Z – EZ)–
∥∥
q ≤

√
C2q

(
‖M‖q

(
2EZ + 2q ‖W‖q

) ∨ q ‖M‖2q
)

where C2 < 2.42 is as in Exercise 15.3.
15.5. Use symmetrization and Theorem 15.9 to derive the following version of

Marcinkiewicz’ inequality: ifX1, . . . ,Xn are independent centered random variables
then for any q ≥ 2,∥∥∥∥∥

n∑
i=1

Xi

∥∥∥∥∥
q

≤ 21+1/q
√
2Kq

√√√√∥∥∥∥∥
n∑
i=1

X2
i

∥∥∥∥∥
q/2

.
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15.6. Let X1, . . . ,Xn be independent standard Gaussian random variables. Let
μ = EX4

i = 3. Let a1, . . . , an be real numbers. Let Z =
∑n

i=1 ai(X
4
i – μ). Find

upper bounds for the variance of Z and ‖Z+‖q for q ≥ 2.
15.7. Let X1, . . . ,Xn be symmetric exponentially distributed independent random vari-

ables such that P{|Xi| > x} = e–x for x ≥ 0. Let s ∈ [0,∞)n have nonincreasing
coordinates s1 ≥ s2 ≥ · · · ≥ sn. Prove that there exists κ > 0 such that for all
p ≥ 2,

E

[∣∣∣∣∣
n∑
i=1

siXi

∣∣∣∣∣
p]1/p

≤ κ

⎛⎝p
p∑
i=1

si +

√√√√p
n∑

i=p+1

s2i

⎞⎠.

15.8. Let X1, . . . ,Xn be independent standard Gaussian random variables. Let T
be a countable index set. Let a1, . . . , an be vectors indexed by T . Let Z =
sups∈T

∑n
i=1 ai,s(X

4
i – μ). Find upper bounds for the variance of Z and ‖Z+‖q for

q ≥ 2.
15.9. Let Z satisfy Bernstein’s inequality with variance factor σ 2 + 2EZ and scale factor

1/3. Prove that for θ > 0 and λ ∈ [0, 1],

P {Z – EZ ≥ θEZ + t} ≤ exp
(
–

λt2

2σ 2

)
∨ exp

(
–

(1 – λ)t
2(1/3 + 2/θ)

)
.

Hint: verify that for all u, v > 0 and all 0 ≤ λ ≤ 1, exp (–1/(u + v)) ≤
exp (–λ/u) ∨ exp (–(1 – λ)/v). See Adamczak (2008).

15.10. Let X1, . . . ,Xn be independent identically distributed random vectors indexed
by the countable set T . Assume that for all i = 1 . . . , n, s ∈ T , EXi,s = 0. For
i = 1, . . . , n, let Yi = sups∈T |Xi,s|. Assume that for some b > 0, EeYi/b ≤ 2. Let
Z = sups∈T

∣∣∑n
i=1 Xi,s

∣∣ and σ 2 = sups∈T
∑n

i=1 EX
2
i,s. Prove that for all 0 < ε < 1

and δ > 0 there exists κ = κ(ε, δ) such that for all t > 0,

P
{
Z ≥ (1 + ε)EZ + t

} ≤ exp
(
–

t2

2(1 + δ)σ 2

)
∨ 3 exp

(
–

t
κb log n

)
.

See Adamczak (2008).
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